A Novel FFT-Based Frequency Offset Estimator for OFDM Systems

This paper proposes a novel frequency offset (FO) estimator for orthogonal frequency division multiplexing. Simplicity is most significant feature of this algorithm and can be repeated to achieve acceptable accuracy. Also fractional and integer part of FO is estimated jointly with use of the same algorithm. To do so, instead of using conventional algorithms that usually use correlation function, we use DFT of received signal. Therefore, complexity will be reduced and we can do synchronization procedure by the same hardware that is used to demodulate OFDM symbol. Finally, computer simulation shows that the accuracy of this method is better than other conventional methods.

A Low Power SRAM Base on Novel Word-Line Decoding

This paper proposes a low power SRAM based on five transistor SRAM cell. Proposed SRAM uses novel word-line decoding such that, during read/write operation, only selected cell connected to bit-line whereas, in conventional SRAM (CV-SRAM), all cells in selected row connected to their bit-lines, which in turn develops differential voltages across all bit-lines, and this makes energy consumption on unselected bit-lines. In proposed SRAM memory array divided into two halves and this causes data-line capacitance to reduce. Also proposed SRAM uses one bit-line and thus has lower bit-line leakage compared to CV-SRAM. Furthermore, the proposed SRAM incurs no area overhead, and has comparable read/write performance versus the CV-SRAM. Simulation results in standard 0.25μm CMOS technology shows in worst case proposed SRAM has 80% smaller dynamic energy consumption in each cycle compared to CV-SRAM. Besides, energy consumption in each cycle of proposed SRAM and CV-SRAM investigated analytically, the results of which are in good agreement with the simulation results.

Towards CO2 Adsorption Enhancement via Polyethyleneimine Impregnation

To reduce the carbon dioxide emission into the atmosphere, adsorption is believed to be one of the most attractive methods for post-combustion treatment of flue gas. In this work, activated carbon (AC) was modified by polyethylenimine (PEI) via impregnation in order to enhance CO2 adsorption capacity. The adsorbents were produced at 0.04, 0.16, 0.22, 0.25, and 0.28 wt% PEI/AC. The adsorption was carried out at a temperature range from 30 °C to 75 °C and five different gas pressures up to 1 atm. TG-DTA, FT-IR, UV-visible spectrometer, and BET were used to characterize the adsorbents. Effects of PEI loading on the AC for the CO2 adsorption were investigated. Effectiveness of the adsorbents on the CO2 adsorption including CO2 adsorption capacity and adsorption temperature was also investigated. Adsorption capacities of CO2 were enhanced with the increase in the amount of PEI from 0.04 to 0.22 wt% PEI before the capacities decreased onwards from0.25 wt% PEI at 30 °C. The 0.22 wt% PEI/AC showed higher adsorption capacity than the AC for adsorption at 50 °C to 75 °C.

Wrap-around View Equipped on Mobile Robot

This paper presents a wrap-around view system with 4 smart cameras module and remote motion mobile robot control equipped with smart camera module system. The two-level scheme for remote motion control with smart-pad(IPAD) is introduced on this paper. In the low-level, the wrap-around view system is controlled or operated to keep the reference points lying around top view image plane. On the higher level, a robot image based motion controller is utilized to drive the mobile platform to reach the desired position or track the desired motion planning through image feature feedback. The design wrap-around view system equipped on presents such advantages as follows: 1) a satisfactory solution for the FOV and affine problem; 2) free of any complex and constraint with robot pose. The performance of the wrap-around view equipped on mobile robot remote control is proven by experimental results.

Simulation of Enhanced Biomass Gasification for Hydrogen Production using iCON

Due to the environmental and price issues of current energy crisis, scientists and technologists around the globe are intensively searching for new environmentally less-impact form of clean energy that will reduce the high dependency on fossil fuel. Particularly hydrogen can be produced from biomass via thermochemical processes including pyrolysis and gasification due to the economic advantage and can be further enhanced through in-situ carbon dioxide removal using calcium oxide. This work focuses on the synthesis and development of the flowsheet for the enhanced biomass gasification process in PETRONAS-s iCON process simulation software. This hydrogen prediction model is conducted at operating temperature between 600 to 1000oC at atmospheric pressure. Effects of temperature, steam-to-biomass ratio and adsorbent-to-biomass ratio were studied and 0.85 mol fraction of hydrogen is predicted in the product gas. Comparisons of the results are also made with experimental data from literature. The preliminary economic potential of developed system is RM 12.57 x 106 which equivalent to USD 3.77 x 106 annually shows economic viability of this process.

A Trainable Neural Network Ensemble for ECG Beat Classification

This paper illustrates the use of a combined neural network model for classification of electrocardiogram (ECG) beats. We present a trainable neural network ensemble approach to develop customized electrocardiogram beat classifier in an effort to further improve the performance of ECG processing and to offer individualized health care. We process a three stage technique for detection of premature ventricular contraction (PVC) from normal beats and other heart diseases. This method includes a denoising, a feature extraction and a classification. At first we investigate the application of stationary wavelet transform (SWT) for noise reduction of the electrocardiogram (ECG) signals. Then feature extraction module extracts 10 ECG morphological features and one timing interval feature. Then a number of multilayer perceptrons (MLPs) neural networks with different topologies are designed. The performance of the different combination methods as well as the efficiency of the whole system is presented. Among them, Stacked Generalization as a proposed trainable combined neural network model possesses the highest recognition rate of around 95%. Therefore, this network proves to be a suitable candidate in ECG signal diagnosis systems. ECG samples attributing to the different ECG beat types were extracted from the MIT-BIH arrhythmia database for the study.

Novel Dual Stage Membrane Bioreactor for the Continuous Remediation of Electroplating Wastewater

In this study, the designed dual stage membrane bioreactor (MBR) system was conceptualized for the treatment of cyanide and heavy metals in electroplating wastewater. The design consisted of a primary treatment stage to reduce the impact of fluctuations and the secondary treatment stage to remove the residual cyanide and heavy metal contaminants in the wastewater under alkaline pH conditions. The primary treatment stage contained hydrolyzed Citrus sinensis (C. sinensis) pomace and the secondary treatment stage contained active Aspergillus awamori (A. awamori) biomass, supplemented solely with C. sinensis pomace extract from the hydrolysis process. An average of 76.37%, 95.37%, 93.26 and 94.76% and 99.55%, 99.91%, 99.92% and 99.92% degradation efficiency for total cyanide (T-CN), including the sorption of nickel (Ni), zinc (Zn) and copper (Cu) were observed after the first and second treatment stages, respectively. Furthermore, cyanide conversion by-products degradation was 99.81% and 99.75 for both formate (CHOO-) and ammonium (NH4 +) after the second treatment stage. After the first, second and third regeneration cycles of the C. sinensis pomace in the first treatment stage, Ni, Zn and Cu removal achieved was 99.13%, 99.12% and 99.04% (first regeneration cycle), 98.94%, 98.92% and 98.41% (second regeneration cycle) and 98.46 %, 98.44% and 97.91% (third regeneration cycle), respectively. There was relatively insignificant standard deviation detected in all the measured parameters in the system which indicated reproducibility of the remediation efficiency in this continuous system.

Pyrolysis of Rice Husk in a Fixed Bed Reactor

Fixed-bed slow pyrolysis experiments of rice husk have been conducted to determine the effect of pyrolysis temperature, heating rate, particle size and reactor length on the pyrolysis product yields. Pyrolysis experiments were performed at pyrolysis temperature between 400 and 600°C with a constant heating rate of 60°C/min and particle sizes of 0.60-1.18 mm. The optimum process conditions for maximum liquid yield from the rice husk pyrolysis in a fixed bed reactor were also identified. The highest liquid yield was obtained at a pyrolysis temperature of 500°C, particle size of 1.18-1.80 mm, with a heating rate of 60°C/min in a 300 mm length reactor. The obtained yield of, liquid, gas and solid were found be in the range of 22.57-31.78 %, 27.75-42.26 % and 34.17-42.52 % (all weight basics) respectively at different pyrolysis conditions. The results indicate that the effects of pyrolysis temperature and particle size on the pyrolysis yield are more significant than that of heating rate and reactor length. The functional groups and chemical compositions present in the liquid obtained at optimum conditions were identified by Fourier Transform-Infrared (FT-IR) spectroscopy and Gas Chromatography/ Mass Spectroscopy (GC/MS) analysis respectively.

Factors Influence Depositors- Withdrawal Behavior in Islamic Banks: A Theory of Reasoned Action

Unlike its conventional counterpart, Islamic principles forbid Islamic banks to take any interest-related income and thus makes deposits from depositors as an important source of fund for its operational and financing. Consequently, the risk of deposit withdrawal by depositors is an important aspect that should be wellmanaged in Islamic banking. This paper aims to investigate factors that influence depositors- withdrawal behavior in Islamic banks, particularly in Malaysia, using the framework of theory of reasoned action. A total of 368 respondents from Klang valley are involved in the analysis. The paper finds that all the constructs variable i.e. normative beliefs, subjective norms, behavioral beliefs, and attitude towards behavior are perceived to be distinct by the respondents. In addition, the structural equation model is able to verify the structural relationships between subjective norms, attitude towards behavior and behavioral intention. Subjective norms gives more influence to depositors- decision on deposit withdrawal compared to attitude towards behavior.

In-Situ Monitoring the Thermal Forming of Glass and Si Foils for Space X-Ray Telescopes

We developed a non-contact method for the in-situ monitoring of the thermal forming of glass and Si foils to optimize the manufacture of mirrors for high-resolution space x-ray telescopes. Their construction requires precise and light-weight segmented optics with angular resolution better than 5 arcsec. We used 75x25 mm Desag D263 glass foils 0.75 mm thick and 0.6 mm thick Si foils. The glass foils were shaped by free slumping on a frame at viscosities in the range of 109.3-1012 dPa·s, the Si foils by forced slumping above 1000°C. Using a Nikon D80 digital camera, we took snapshots of a foil-s shape every 5 min during its isothermal heat treatment. The obtained results we can use for computer simulations. By comparing the measured and simulated data, we can more precisely define material properties of the foils and optimize the forming technology.

Memory Estimation of Internet Server Using Queuing Theory: Comparative Study between M/G/1, G/M/1 and G/G/1 Queuing Model

How to effectively allocate system resource to process the Client request by Gateway servers is a challenging problem. In this paper, we propose an improved scheme for autonomous performance of Gateway servers under highly dynamic traffic loads. We devise a methodology to calculate Queue Length and Waiting Time utilizing Gateway Server information to reduce response time variance in presence of bursty traffic. The most widespread contemplation is performance, because Gateway Servers must offer cost-effective and high-availability services in the elongated period, thus they have to be scaled to meet the expected load. Performance measurements can be the base for performance modeling and prediction. With the help of performance models, the performance metrics (like buffer estimation, waiting time) can be determined at the development process. This paper describes the possible queue models those can be applied in the estimation of queue length to estimate the final value of the memory size. Both simulation and experimental studies using synthesized workloads and analysis of real-world Gateway Servers demonstrate the effectiveness of the proposed system.

Effect of Heat Input on the Weld Metal Toughness of Chromium-Molybdenum Steel

An attempt has been made to determine the strength and impact properties of Cr-Mo steel weld and base materials by varying the current during manual metal arc welding. Toughness over a temperature range from -32 to 100°C of base, heat affected zone (HAZ) and weld zones at three current settings are made. It is observed that the deterioration in notch toughness at any zone with the temperature decreases. The values of notch toughness for all zones at -32°C are almost same for any current settings. The values of notch toughness at HAZ area are higher than that of weld area due to the coarsening of ferrite grain of HAZ occurs with higher heat input. From microhardness and microstructure result, it can be concluded that large inclusion content in weld deposit is the cause of lower notch toughness value.

Appraisal of Energy Efficiency of Urban Development Plans: The Fidelity Concept on Izmir-Balcova Case

Design and land use are closely linked to the energy efficiency levels for an urban area. The current city planning practice does not involve an effective land useenergy evaluation in its 'blueprint' urban plans. The study proposed an appraisal method that can be embedded in GIS programs using five planning criteria as how far a planner can give away from the planning principles (criteria) for the most energy output s/he can obtain. The case of Balcova, a district in the Izmir Metropolitan area, is used conformingly for evaluating the proposed master plan and the geothermal energy (heating only) use for the concern district. If the land use design were proposed accordingly at-most energy efficiency (a 30% obtained), mainly increasing the density around the geothermal wells and also proposing more mixed use zones, we could have 17% distortion (infidelity to the main planning principles) from the original plan. The proposed method can be an effective tool for planners as simulation media, of which calculations can be made by GIS ready tools, to evaluate efficiency levels for different plan proposals, letting to know how much energy saving causes how much deviation from the other planning ideals. Lower energy uses can be possible for different land use proposals for various policy trials.

Fuzzy Risk-Based Life Cycle Assessment for Estimating Environmental Aspects in EMS

Environmental aspects plays a central role in environmental management system (EMS) because it is the basis for the identification of an organization-s environmental targets. The existing methods for the assessment of environmental aspects are grouped into three categories: risk assessment-based (RA-based), LCA-based and criterion-based methods. To combine the benefits of these three categories of research, this study proposes an integrated framework, combining RA-, LCA- and criterion-based methods. The integrated framework incorporates LCA techniques for the identification of the causal linkage for aspect, pathway, receptor and impact, uses fuzzy logic to assess aspects, considers fuzzy conditions, in likelihood assessment, and employs a new multi-criteria decision analysis method - multi-criteria and multi-connection comprehensive assessment (MMCA) - to estimate significant aspects in EMS. The proposed model is verified, using a real case study and the results show that this method successfully prioritizes the environmental aspects.

Deoxygenation of Beef Fat over Pd Supported Mesoporous TiO2 Catalyst Prepared by Single-Step Sol-Gel Process with Surfactant Template

Deoxygenation of beef fat for the production of hydrogenated biodiesel is investigated in a high pressure continuous flow fixed bed reactor over palladium-supported mesoporous titania catalyst synthesized via a combined single-step sol-gel process with surfactant-assisted templating method (SATM). The catalyst possessed a mesoporous charactheristic with high surface area and narrow pore size distribution. The main products of all Pd/TiO2 catalysts are n-heptadecane (n-C17) and n-pentadecane (n-C15) resulting from decarbonylation reaction. Pd/TiO2 catalyst synthesized via a combined single-step sol-gel process with SATM (SSSG) gave higher activity and selectivity to the desired products when compared to IWI/SG-TiO2 and IWI/P25-TiO2, respectively. SSSG catalyst gave the average conversion up to 80-90 % and 80 % for the selectivity in diesel range hydrocarbons. This result may cause by the higher surface area and the ability in dispersion of palladium ion in mesoporous of TiO2 during sol-gel process.

Bayesian Belief Networks for Test Driven Development

Testing accounts for the major percentage of technical contribution in the software development process. Typically, it consumes more than 50 percent of the total cost of developing a piece of software. The selection of software tests is a very important activity within this process to ensure the software reliability requirements are met. Generally tests are run to achieve maximum coverage of the software code and very little attention is given to the achieved reliability of the software. Using an existing methodology, this paper describes how to use Bayesian Belief Networks (BBNs) to select unit tests based on their contribution to the reliability of the module under consideration. In particular the work examines how the approach can enhance test-first development by assessing the quality of test suites resulting from this development methodology and providing insight into additional tests that can significantly reduce the achieved reliability. In this way the method can produce an optimal selection of inputs and the order in which the tests are executed to maximize the software reliability. To illustrate this approach, a belief network is constructed for a modern software system incorporating the expert opinion, expressed through probabilities of the relative quality of the elements of the software, and the potential effectiveness of the software tests. The steps involved in constructing the Bayesian Network are explained as is a method to allow for the test suite resulting from test-driven development.

Information and Communication Technologies vs. Education and Training: Contribution to Understand the Millennials’ Generational Effect

Information and Communication Technologies (ICT) are increasing in importance everyday, especially since the 90’s (last decade of birth for the Millennials generation). While social interactions involving the Millennials generation have been studied, a lack of investigation remains regarding the use of the ICT by this generation as well as the impact on outcomes in education and professional training. Observing and interviewing students preparing a MSc, we aimed at characterizing the interaction students-ICT during the courses. We found that up to 50% of the students (mainly female) could use ICT during courses at a rate of 0.84 occurrence/minutes for some of them, and they thought this involvement did not disturb learning, even was helpful. As recent researches show that multitasking leads people think they are much better than they actually are, further observations with assessments are needed to conclude whether or not the use ICT by students during the courses is a real strength.

X-Ray Intensity Measurement Using Frequency Output Sensor for Computed Tomography

Quality of 2D and 3D cross-sectional images produce by Computed Tomography primarily depend upon the degree of precision of primary and secondary X-Ray intensity detection. Traditional method of primary intensity detection is apt to errors. Recently the X-Ray intensity measurement system along with smart X-Ray sensors is developed by our group which is able to detect primary X-Ray intensity unerringly. In this study a new smart X-Ray sensor is developed using Light-to-Frequency converter TSL230 from Texas Instruments which has numerous advantages in terms of noiseless data acquisition and transmission. TSL230 construction is based on a silicon photodiode which converts incoming X-Ray radiation into the proportional current signal. A current to frequency converter is attached to this photodiode on a single monolithic CMOS integrated circuit which provides proportional frequency count to incoming current signal in the form of the pulse train. The frequency count is delivered to the center of PICDEM FS USB board with PIC18F4550 microcontroller mounted on it. With highly compact electronic hardware, this Demo Board efficiently read the smart sensor output data. The frequency output approaches overcome nonlinear behavior of sensors with analog output thus un-attenuated X-Ray intensities could be measured precisely and better normalization could be acquired in order to attain high resolution.

Text Retrieval Relevance Feedback Techniques for Bag of Words Model in CBIR

The state-of-the-art Bag of Words model in Content- Based Image Retrieval has been used for years but the relevance feedback strategies for this model are not fully investigated. Inspired from text retrieval, the Bag of Words model has the ability to use the wealth of knowledge and practices available in text retrieval. We study and experiment the relevance feedback model in text retrieval for adapting it to image retrieval. The experiments show that the techniques from text retrieval give good results for image retrieval and that further improvements is possible.

Classifying of Maize Inbred Lines into Heterotic Groups using Diallel Analysis

The selection of parents and breeding strategies for the successful maize hybrid production will be facilitated by heterotic groupings of parental lines and determination of combining abilities of them. Fourteen maize inbred lines, used in maize breeding programs in Iran, were crossed in a diallel mating design. The 91 F1 hybrids and the 14 parental lines were studied during two years at four locations of Iran for investigation of combining ability of gentypes for grain yield and to determine heterotic patterns among germplasm sources, using both, the Griffing-s method and the biplot approach for diallel analysis. The graphical representation offered by biplot analysis allowed a rapid and effective overview of general combining ability (GCA) and specific combining ability (SCA) effects of the inbred lines, their performance in crosses, as well as grouping patterns of similar genotypes. GCA and SCA effects were significant for grain yield (GY). Based on significant positive GCA effects, the lines derived from LSC could be used as parent in crosses to increase GY. The maximum best- parent heterosis values and highest SCA effects resulted from crosses B73 × MO17 and A679 × MO17 for GY. The best heterotic patterns were LSC × RYD, which would be potentially useful in maize breeding programs to obtain high-yielding hybrids in the same climate of Iran.