Abstract: Chip formation characteristics are investigated during surface finishing of high density polyethylene (HDPE) samples using a shaper machine. Both the cutting speed and depth of cut are varied continually to enable observations under various machining conditions. The generated chips are analyzed in terms of their shape, size, and deformation. Their physical appearances are also observed using digital camera and optical microscope. The investigation shows that continuous chips are obtained for all the cutting conditions. It is observed that cutting speed is more influential than depth of cut to cause dimensional changes of chips. Chips curl radius is also found to increase gradually with the increase of cutting speed. The length of continuous chips remains always smaller than the job length, and the corresponding discrepancies are found to be more prominent at lower cutting speed. Microstructures of the chips reveal that cracks are formed at higher cutting speeds and depth of cuts, which is not that significant at low depth of cut.
Abstract: The influence of Mg and Zr addition on mechanical properties such as hardness, tensile strength and impact energy of commercially pure Al are investigated. The microstructure and fracture behavior are also studied by using Optical and Scanning Electron Microscopy. It is observed that magnesium addition improves the mechanical properties of commercially pure Al at the expense of ductility due to formation of β″ (Al3Mg) and β′ (Al3Mg2) phase into the alloy. Zr addition also plays a positive role through grain refinement effect and the formation of metastable L12 Al3Zr precipitates. In addition, it is observed that the fractured surface of Mg added alloy is brittle and higher numbers of dimples are observed in case of Zr added alloy.
Abstract: The tribological behavior of commercially used Perspex was evaluated under dry and wet sliding condition using a pin-on-disc wear tester with different applied loads ranging from 2.5 to 20 N. Experiments were conducted with varying sliding distance from 0.2 km to 4.6 km, wherein the sliding velocity was kept constant, 0.64 ms-1. The results reveal that the weight loss increases with applied load and the sliding distance. The nature of the wear rate was very similar in both the sliding environments in which initially the wear rate increased very rapidly with increasing sliding distance and then progressed to a slower rate. Moreover, the wear rate in wet sliding environment was significantly lower than that under dry sliding condition. The worn surfaces were characterized by optical microscope and SEM. It is found that surface modification has significant effect on sliding wear performance of Perspex.
Abstract: Corrosion behaviour of hypereutectic Al-19Si automotive alloy in different pH=1, 3, 5, 7, 9, 11, and 13 environments was carried out using conventional gravimetric measurements and was complemented by resistivity, optical micrograph, scanning electron microscopy (SEM) and X-ray analyzer (EDX) investigations. Gravimetric analysis confirmed that the highest corrosion rate is shown at pH 13 followed by pH 1. Minimum corrosion occurs in the pH range of 3.0 to 11 due to establishment of passive layer on the surface. The highest corrosion rate at pH 13 is due to the presence of sodium hydroxide in the solution which dissolves the surface oxide film at a steady rate. At pH 1, it can be attributed that the presence of aggressive chloride ions serves to pick up the damage of the passive films at localized regions. With varying exposure periods by both, the environment complies with the normal corrosion rate profile that is an initial steep rise followed by a nearly constant value of corrosion rate. Resistivity increases in case of pH 1 solution for the higher pit formation and decreases at pH 13 due to formation of thin film. The SEM image of corroded samples immersed in pH 1 solution clearly shows pores on the surface and in pH 13 solution, and the corrosion layer seems more compact and homogenous and not porous.
Abstract: In the present work, the effect of load and sliding
distance on the performance tribology of commercially used
aluminium-silicon engine block and piston was evaluated at ambient
conditions with humidity of 80% under dry sliding conditions using a
pin-on-disc with two different loads of 5N and 20N yielding applied
pressure of 0.30MPa and 1.4MPa, respectively, at sliding velocity of
0.29ms-1 and with varying sliding distance ranging from 260m-
4200m. Factors and conditions that had significant effect were
identified. The results showed that the load and the sliding distance
affect the wear rate of the alloys and the wear rate increased with
increasing load for both the alloys. Wear rate also increases almost
linearly at low loads and increase to a maximum then attain a plateau
with increasing sliding distance. For both applied loads the piston
alloy showed the better performance due to higher Ni and Mg
content. The worn surface and wear debris was characterized by
optical microscope, SEM and EDX analyzer. The worn surface was
characterized by surface with shallow grooves at loads while the
groove width and depth increased as the loads increases. Oxidative
wear was found to be the predominant mechanisms in the dry sliding
of Al-Si alloys at low loads.
Abstract: Ageing of 75% cold rolled Al-6Mg alloy with ternary 0.4 wt% scandium and quaternary zirconium and titanium has been carried out. Alloy samples are naturally, isochronally and isothermally aged for different time and temperatures. Hardness values of the differently processed alloys have been measured to understand the ageing behavior of Al-6Mg alloy with scandium and quaternary zirconium and titanium addition. Resistivity changes with annealing time and temperature were measured to understand the precipitation behavior and recovery of strain of the alloy. Attempts were also made to understand the grain refining effect of scandium in Al-6Mg alloy. It is observed that significant hardening takes place in the aged alloys due to the precipitation of scandium aluminides and the dendrites of the Al-6Mg alloy have been refined significantly due to addition of scandium.
Abstract: An attempt has been made to determine the strength
and impact properties of Cr-Mo steel weld and base materials by
varying the current during manual metal arc welding. Toughness over
a temperature range from -32 to 100°C of base, heat affected zone
(HAZ) and weld zones at three current settings are made. It is
observed that the deterioration in notch toughness at any zone with
the temperature decreases. The values of notch toughness for all
zones at -32°C are almost same for any current settings. The values
of notch toughness at HAZ area are higher than that of weld area due
to the coarsening of ferrite grain of HAZ occurs with higher heat
input. From microhardness and microstructure result, it can be
concluded that large inclusion content in weld deposit is the cause of
lower notch toughness value.