Effect of Body Size and Condition Factor on Whole Body Composition of Hybrid (Catla catla ♂x Labeo rohita ♀) from Pakistan

In the present study, 49 Hybrid (Catla catla ♂ x Labeo rohita ♀) were sampled from Al-Raheem Fish Hatchery, Village Ali Pure Shamali, Jhang Road, 18 Km from Muzaffar Garh using a cast net and Live fishes were transported to research laboratory. Mean percentage for water found 79.13 %, ash 6.58 %, fat 2.22 % and protein content 12.06 % in whole wet body weight. It was observed that body constituents were found increasing in the same proportion with an increase in body weight while significant proportional increase was observed with total length. However, condition factor remained insignificant (P>0.05) with body constituents.

A Hybrid Neural Network and Gravitational Search Algorithm (HNNGSA) Method to Solve well known Wessinger's Equation

This study presents a hybrid neural network and Gravitational Search Algorithm (HNGSA) method to solve well known Wessinger's equation. To aim this purpose, gravitational search algorithm (GSA) technique is applied to train a multi-layer perceptron neural network, which is used as approximation solution of the Wessinger's equation. A trial solution of the differential equation is written as sum of two parts. The first part satisfies the initial/ boundary conditions and does not contain any adjustable parameters and the second part which is constructed so as not to affect the initial/boundary conditions. The second part involves adjustable parameters (the weights and biases) for a multi-layer perceptron neural network. In order to demonstrate the presented method, the obtained results of the proposed method are compared with some known numerical methods. The given results show that presented method can introduce a closer form to the analytic solution than other numerical methods. Present method can be easily extended to solve a wide range of problems.

The Hybrid Knowledge Model for Product Development Management

Hybrid knowledge model is suggested as an underlying framework for product development management. It can support such hybrid features as ontologies and rules. Effective collaboration in product development environment depends on sharing and reasoning product information as well as engineering knowledge. Many studies have considered product information and engineering knowledge. However, most previous research has focused either on building the ontology of product information or rule-based systems of engineering knowledge. This paper shows that F-logic based knowledge model can support such desirable features in a hybrid way.

Recent Developments in Electric Vehicles for Passenger Car Transport

Electric vehicles are considered as technology which can significantly reduce the problems related to road transport such as increasing GHG emissions, air pollutions and energy import dependency. The core objective of this paper is to analyze the current energetic, ecological and economic characteristics of different types of electric vehicles. The major conclusions of this analysis are: The high investments cost are the major barrier for broad market breakthrough of battery electric vehicles and fuel cell vehicles. For battery electric vehicles also the limited driving range states a key obstacle. The analyzed hybrids could in principle serve as a bridging technology. However, due to their tank-to-wheel emissions they cannot state a proper solution for urban areas. Finally, the most important perception is that also battery electric vehicles and fuel cell vehicles are environmentally benign solution if the primary fuel source is renewable.

On One Application of Hybrid Methods For Solving Volterra Integral Equations

As is known, one of the priority directions of research works of natural sciences is introduction of applied section of contemporary mathematics as approximate and numerical methods to solving integral equation into practice. We fare with the solving of integral equation while studying many phenomena of nature to whose numerically solving by the methods of quadrature are mainly applied. Taking into account some deficiency of methods of quadrature for finding the solution of integral equation some sciences suggested of the multistep methods with constant coefficients. Unlike these papers, here we consider application of hybrid methods to the numerical solution of Volterra integral equation. The efficiency of the suggested method is proved and a concrete method with accuracy order p = 4 is constructed. This method in more precise than the corresponding known methods.

Load Balancing in Genetic Zone Routing Protocol for MANETs

Genetic Zone Routing Protocol (GZRP) is a new hybrid routing protocol for MANETs which is an extension of ZRP by using Genetic Algorithm (GA). GZRP uses GA on IERP and BRP parts of ZRP to provide a limited set of alternative routes to the destination in order to load balance the network and robustness during node/link failure during the route discovery process. GZRP is studied for its performance compared to ZRP in many folds like scalability for packet delivery and proved with improved results. This paper presents the results of the effect of load balancing on GZRP. The results show that GZRP outperforms ZRP while balancing the load.

The Hybrid Socio-Technical Approach as a Strategic Program for Social Development in Geo-disaster Prone Area in Indonesia

This paper highlights the importance of integrating social and technical approach (which is so called a “hybrid socio-technical approach") as one innovative and strategic program to support the social development in geodisaster prone area in Indonesia. Such program mainly based on public education and community participation as a partnership program by the University, local government and may also with the private company and/ or local NGO. The indigenous, simple and low cost technology has also been introduced and developed as a part of the hybrid sociotechnical system, in order to ensure the life and environmental protection, with respect to the sustainable human and social development.

A Hybridized Competency-Based Teacher Candidate Selection System

Teachers form the backbone of any educational system, hence selecting qualified candidates is very crucial. In Malaysia, the decision making in the selection process involves a few stages: Initial filtering through academic achievement, taking entry examination and going through an interview session. The last stage is the most challenging since it highly depends on human judgment. Therefore, this study sought to identify the selection criteria for teacher candidates that form the basis for an efficient multi-criteria teacher-candidate selection model for that last stage. The relevant criteria were determined from the literature and also based on expert input that is those who were involved in interviewing teacher candidates from a public university offering the formal training program. There are three main competency criteria that were identified which are content of knowledge, communication skills and personality. Further, each main criterion was divided into a few subcriteria. The Analytical Hierarchy Process (AHP) technique was employed to allocate weights for the criteria and later, integrated a Simple Weighted Average (SWA) scoring approach to develop the selection model. Subsequently, a web-based Decision Support System was developed to assist in the process of selecting the qualified teacher candidates. The Teacher-Candidate Selection (TeCaS) system is able to assist the panel of interviewers during the selection process which involves a large amount of complex qualitative judgments.

Multiobjective Optimal Power Flow Using Hybrid Evolutionary Algorithm

This paper solves the environmental/ economic dispatch power system problem using the Non-dominated Sorting Genetic Algorithm-II (NSGA-II) and its hybrid with a Convergence Accelerator Operator (CAO), called the NSGA-II/CAO. These multiobjective evolutionary algorithms were applied to the standard IEEE 30-bus six-generator test system. Several optimization runs were carried out on different cases of problem complexity. Different quality measure which compare the performance of the two solution techniques were considered. The results demonstrated that the inclusion of the CAO in the original NSGA-II improves its convergence while preserving the diversity properties of the solution set.

A Hybrid Search Algorithm for Solving Constraint Satisfaction Problems

In this paper we present a hybrid search algorithm for solving constraint satisfaction and optimization problems. This algorithm combines ideas of two basic approaches: complete and incomplete algorithms which also known as systematic search and local search algorithms. Different characteristics of systematic search and local search methods are complementary. Therefore we have tried to get the advantages of both approaches in the presented algorithm. The major advantage of presented algorithm is finding partial sound solution for complicated problems which their complete solution could not be found in a reasonable time. This algorithm results are compared with other algorithms using the well known n-queens problem.

Investigation of SSR Characteristics of SSSC With GA Based Voltage Controller

In this paper, investigation of subsynchronous resonance (SSR) characteristics of a hybrid series compensated system and the design of voltage controller for three level 24-pulse Voltage Source Converter based Static Synchronous Series Compensator (SSSC) is presented. Hybrid compensation consists of series fixed capacitor and SSSC which is a active series FACTS controller. The design of voltage controller for SSSC is based on damping torque analysis, and Genetic Algorithm (GA) is adopted for tuning the controller parameters. The SSR Characteristics of SSSC with constant reactive voltage control modes has been investigated. The results show that the constant reactive voltage control of SSSC has the effect of reducing the electrical resonance frequency, which detunes the SSR.The analysis of SSR with SSSC is carried out based on frequency domain method, eigenvalue analysis and transient simulation. While the eigenvalue and damping torque analysis are based on D-Q model of SSSC, the transient simulation considers both D-Q and detailed three phase nonlinear system model using switching functions.

Response Surface Based Optimization of Toughness of Hybrid Polyamide 6 Nanocomposites

Toughening of polyamide 6 (PA6)/ Nanoclay (NC) nanocomposites with styrene-ethylene/butadiene-styrene copolymer (SEBS) using maleated styrene-ethylene/butadiene-styrene copolymer (mSEBS)/ as a compatibilizer were investigated by blending them in a co-rotating twin-screw extruder. Response surface method of experimental design was used for optimizing the material and processing parameters. Effect of four factors, including SEBS, mSEBS and NC contents as material variables and order of mixing as a processing factor, on toughness of hybrid nanocomposites were studied. All the prepared samples showed ductile behavior and low temperature Izod impact toughness of some of the hybrid nanocomposites demonstrated 900% improvement compared to the PA6 matrix while the modulus showed maximum enhancement of 20% compared to the pristine PA6 resin.

Plant Location Selection by Using a Three-Step Methodology: Delphi-AHP-VIKOR

Nowadays, the plant location selection has a critical impact on the performance of numerous companies. In this paper, a methodology is presented to solve this problem. The three decision making methods, namely Delphi, AHP and improved VIKOR, are hybridized in order to make the best use of information available based on the decision makers or experts. In this respect, the aim of using Delphi is to select the most influential criteria by a few decision makers. The AHP is utilized to give weights of the selected criteria. Finally, the improved VIKOR method is applied to rank alternatives. At the end of paper, an application example demonstrates the applicability of the proposed methodology.

Minimal Spanning Tree based Fuzzy Clustering

Most of fuzzy clustering algorithms have some discrepancies, e.g. they are not able to detect clusters with convex shapes, the number of the clusters should be a priori known, they suffer from numerical problems, like sensitiveness to the initialization, etc. This paper studies the synergistic combination of the hierarchical and graph theoretic minimal spanning tree based clustering algorithm with the partitional Gath-Geva fuzzy clustering algorithm. The aim of this hybridization is to increase the robustness and consistency of the clustering results and to decrease the number of the heuristically defined parameters of these algorithms to decrease the influence of the user on the clustering results. For the analysis of the resulted fuzzy clusters a new fuzzy similarity measure based tool has been presented. The calculated similarities of the clusters can be used for the hierarchical clustering of the resulted fuzzy clusters, which information is useful for cluster merging and for the visualization of the clustering results. As the examples used for the illustration of the operation of the new algorithm will show, the proposed algorithm can detect clusters from data with arbitrary shape and does not suffer from the numerical problems of the classical Gath-Geva fuzzy clustering algorithm.

Direct Power Control Strategies for Multilevel Inverter Based Custom Power Devices

Custom power is a technology driven product and service solution which embraces a family devices such as Dynamic Voltage Restorer (DVR), Distributed Shunt Compensator (DSTATCOM), Solid State Breaker (SSB) etc which will provide power quality functions at distribution voltages. The rapid response of these devices enables them to operate in real time, providing continuous and dynamic control of the supply including voltage and reactive power regulation, harmonic reduction and elimination of voltage dips. This paper presents the benefits of multilevel inverters when they are used for DPC based custom power devices. Power flow control mechanism, salient features, advantages and disadvantages of direct power control (DPC) using lookup table, SVM, predictive voltage vector and hybrid DPC strategies are discussed in this paper. Simulation results of three level inverter based STATCOM, harmonic analysis of multi level inverters are presented at the end.

Scaling up Detection Rates and Reducing False Positives in Intrusion Detection using NBTree

In this paper, we present a new learning algorithm for anomaly based network intrusion detection using improved self adaptive naïve Bayesian tree (NBTree), which induces a hybrid of decision tree and naïve Bayesian classifier. The proposed approach scales up the balance detections for different attack types and keeps the false positives at acceptable level in intrusion detection. In complex and dynamic large intrusion detection dataset, the detection accuracy of naïve Bayesian classifier does not scale up as well as decision tree. It has been successfully tested in other problem domains that naïve Bayesian tree improves the classification rates in large dataset. In naïve Bayesian tree nodes contain and split as regular decision-trees, but the leaves contain naïve Bayesian classifiers. The experimental results on KDD99 benchmark network intrusion detection dataset demonstrate that this new approach scales up the detection rates for different attack types and reduces false positives in network intrusion detection.

Differentiation of Gene Expression Profiles Data for Liver and Kidney of Pigs

Using DNA microarrays the comparative analysis of a gene expression profiles is carried out in a liver and kidneys of pigs. The hypothesis of a cross hybridization of one probe with different cDNA sites of the same gene or different genes is checked up, and it is shown, that cross hybridization can be a source of essential errors at revealing of a key genes in organ-specific transcriptome. It is reveald that distinctions in profiles of a gene expression are well coordinated with function, morphology, biochemistry and histology of these organs.

Hybrid Minimal Repair for a Serial System

This study proposes a hybrid minimal repair policy which combines periodic maintenance policy with age-based maintenance policy for a serial production system. Parameters of such policy are defined as  and  which indicate as hybrid minimal repair time and planned preventive maintenance time respectively  . Under this hybrid policy, the system is repaired minimally if it fails during , . A perfect repair is conducted on the first failure after  at any machines. At the same time, we take opportunity to advance the preventive maintenance of other machines simultaneously. If the system is still operating properly up to , then the preventive maintenance is carried out as its predetermined schedule. For a given , we obtain the optimal value  which minimizes the expected cost per time unit. Numerical example is presented to illustrate the properties of the optimal solution.

Single and Multiple Sourcing in the Auto-Manufacturing Industry

This article outlines a hybrid method, incorporating multiple techniques into an evaluation process, in order to select competitive suppliers in a supply chain. It enables a purchaser to do single sourcing and multiple sourcing by calculating a combined supplier score, which accounts for both qualitative and quantitative factors that have impact on supply chain performance.

An Experimental Consideration of the Hybrid Architecture Based on the Situated Action Generator

The approaches to make an agent generate intelligent actions in the AI field might be roughly categorized into two ways–the classical planning and situated action system. It is well known that each system have its own strength and weakness. However, each system also has its own application field. In particular, most of situated action systems do not directly deal with the logical problem. This paper first briefly mentions the novel action generator to situatedly extract a set of actions, which is likely to help to achieve the goal at the current situation in the relaxed logical space. After performing the action set, the agent should recognize the situation for deciding the next likely action set. However, since the extracted action is an approximation of the action which helps to achieve the goal, the agent could be caught into the deadlock of the problem. This paper proposes the newly developed hybrid architecture to solve the problem, which combines the novel situated action generator with the conventional planner. The empirical result in some planning domains shows that the quality of the resultant path to the goal is mostly acceptable as well as deriving the fast response time, and suggests the correlation between the structure of problems and the organization of each system which generates the action.