Hybrid Minimal Repair for a Serial System

This study proposes a hybrid minimal repair policy which combines periodic maintenance policy with age-based maintenance policy for a serial production system. Parameters of such policy are defined as  and  which indicate as hybrid minimal repair time and planned preventive maintenance time respectively  . Under this hybrid policy, the system is repaired minimally if it fails during , . A perfect repair is conducted on the first failure after  at any machines. At the same time, we take opportunity to advance the preventive maintenance of other machines simultaneously. If the system is still operating properly up to , then the preventive maintenance is carried out as its predetermined schedule. For a given , we obtain the optimal value  which minimizes the expected cost per time unit. Numerical example is presented to illustrate the properties of the optimal solution.




References:
[1] Wang, H., "A survey of maintenance policies of deteriorating systems",
European Journal of Operational Research, Vol.139, 2002, pp.469-489.
[2] Sarkar, A., Panja, S. C., and Sarkar, B., "Survey of maintenance policies
for the last 50 years", International Journal of Software Engineering &
Applications, Vol.2, No.3, 2011, pp.130-148.
[3] Barlow, R., and Hunter, L., "Optimum preventive maintenance policies", Operations Research, Vol.8, No.1, 1960, pp.90-100.
[4] Tahara, A., and Nishida, T., "Optimal replacement policy for minimal
repair model", Journal of Operations Research Society, vol.18, no.3, 1975, pp.113-124.
[5] Nakagawa, T., "Optimal policy of continuous and discrete replacement
with minimal repair at failure", Naval Research Logistics Quarterly, Vol.31, No.4, 1984, pp.5430-550.
[6] Sheu, S., Kuo, C., and Nakagawa, T., "Extended optimal age replacement policy with minimal repair", RAIRO Operations Research,
Vol.27, No.3, 1993, pp.337-351.
[7] Ohnishi, M., "Optimal minimal repair and replacement problem under
average cost criterion: optimality of , policy", Journal of the Operations research, Vol.40, No.3, 1997, pp.373-389.
[8] Iskandar B.P. and Sandoh H., "An opportunity based age replacement
policy considering warranty", International Journal of Reliability,
Quality and Safety Engineering, Vol.6 No.3, 1999, pp.229-236.
[9] Iskandar, B.P., and Sandoh, H., "An extended opportunity-based age
replacement policy", RAIRO Operations Research, Vol.34, No.02, 2000, pp.145-154.
[10] Nakagawa, T., "A summary of periodic replacement with minimal repair at failure", Journal of the Operations Research Society of Japan, Vol.24,
1981, pp.213-228.
[11] Nakagawa, T., "Modified periodic replacement with minimal repair at
failure", IEEE Transactions on Reliability, Vol.30, 1981, pp.165-168.
[12] Nakagawa T., Maintenance Theory of Reliability, London: Springer-
Verlag, 2005, pp.127-131.
[13] Dagpunar J.S., "Hybrid minimal repair and age replacement
maintenance policies, with non-negligible repair times", Naval Research
Logistics, Vol. 41, No.7, 1994, pp.1029-1037.
[14] Husniah H., Pasaribu U.S., Halim A.H., and Iskandar B.P., "A hybrid
minimal repair and age replacement policy for warranted products", in
proceeding of 2nd Asia Pacific Conference on Manufacturing System,
Yogyakarta, Indonesia, 2009.
[15] Dekker, R., dan Roelvink, I.F.K., "Marginal cost criteria for preventive
replacement of a group of components", European Journal of Operational Research, Vol.84, No.2, 1995, pp.467-480.
[16] Dekker, R., Wildeman, R.E., and Van Der Duyn Schouten, F.A., "A
review of multi-component maintenance models with economic dependence", Mathematical Methods of Operational Research, Vol.45, No.3, 1997, pp.411-435.
[17] Nursanti E., Ma-ruf A., Simatupang T., and Iskandar B.P., "An optimal
group inspection policy for a two-machine system", in proceeding of Asia-Oceania Top University League on Engineering, Bandung, Indonesia, 2010.
[18] Tan, J.S., and Kramer, M.A., "A general framework for preventive maintenance optimization in chemical process operations", Computers and Chemical Engineering, Vol. 21, No. 12, 1997, pp.1451-1469.
[19] Ebeling, An Introduction to Reliability and Maintainability Engineering,
New York: McGraw Hill, 1997.
[20] Ilya Gertsbakh, Reliability Theory: With Applications to Preventive Maintenance, Berlin Heidelberg New York: Springer-Verlag, 2000.