Degradability Studies of Photodegradable Plastic Film

Polypropylene blended with natural oil and pigment additives has been studied. Different formulations for each compound were made into polybag used for cultivation of oil palm seedlings for strength and mechanical properties studies. One group of sample was exposed under normal sunlight to initiate degradation and another group of sample was placed under shaded area for five months. All samples were tested for tensile strength to determine the degradation effects. The tensile strength of directly exposed sunlight samples and shaded area showed up to 50% and 25% degradation respectively. However, similar reduction of Young’s modulus for all samples was found for both exposures. Structural investigations were done using FTIR to detect deformation. The natural additives that were used in the studies were all natural and environmental friendly

Polyisoprene-coated Silica/Natural Rubber Composite

The commercial white tyres are usually used for forklifts in food and medicine industries. Conventionally, silica is used as reinforcement in the tyres. However, the adhesion between silica particles and rubber is remarkably poor. To improve the problem of adhesion and hence enhance wear resistance, modification of silica surface is one of the solutions. In this work, the natural rubber compound blending with polyisoprene-coated silica prepared by admicellar polymerization technique was studied to compare with the natural rubber compound of unmodified silica. The surface characterization of modified silica was also examined by SEM, FTIR, and TGA. The results show that polyisoprene-coated silica/natural rubber compound gave better overall mechanical properties, especially wear resistance with the improvement of the adhesion between silica and natural rubber matrix that can be seen in the SEM micrograph.

Microwave Assisted Fast Synthesis of Flower-like ZnO Based Guanidinium Template for Photodegradation of Azo Dye Congo Red

ZnO nanostructure were synthesized via microwave method using zinc acetate as starting material, guanidinium as structure directing agents, and water as solvent.. This work investigates the photodegradation of azo dyes using the ZnO Flowerlike in aqueous solutions. As synthesized ZnO samples were characterized using X-Ray powder diffraction (XRD), scanning electron microscopy (SEM), and FTIR spectroscopy.In this work photodecolorization of congored azo dye under UV irradiation by nano ZnO was studied.

An Overview of the Application of Fuzzy Inference System for the Automation of Breast Cancer Grading with Spectral Data

Breast cancer is one of the most frequent occurring cancers in women throughout the world including U.K. The grading of this cancer plays a vital role in the prognosis of the disease. In this paper we present an overview of the use of advanced computational method of fuzzy inference system as a tool for the automation of breast cancer grading. A new spectral data set obtained from Fourier Transform Infrared Spectroscopy (FTIR) of cancer patients has been used for this study. The future work outlines the potential areas of fuzzy systems that can be used for the automation of breast cancer grading.

Synthesis and Characterization of Plasma Polymerized Thin Films Deposited from Benzene and Hexamethyldisiloxane using (PECVD) Method

Polymer-like organic thin films were deposited on both aluminum alloy type 6061 and glass substrates at room temperature by Plasma Enhanced Chemical Vapor Deposition (PECVD) methodusing benzene and hexamethyldisiloxane (HMDSO) as precursor materials. The surface and physical properties of plasma-polymerized organic thin films were investigated at different r.f. powers. The effects of benzene/argon ratio on the properties of plasma polymerized benzene films were also investigated. It is found that using benzene alone results in a non-coherent and non-adherent powdery deposited material. The chemical structure and surface properties of the asgrown plasma polymerized thin films were analyzed on glass substrates with FTIR and contact angle measurements. FTIR spectra of benzene deposited film indicated that the benzene rings are preserved when increasing benzene ratio and/or decreasing r.f. powers. FTIR spectra of HMDSO deposited films indicated an increase of the hydrogen concentration and a decrease of the oxygen concentration with the increase of r.f. power. The contact angle (θ) of the films prepared from benzene was found to increase by about 43% as benzene ratio increases from 10% to 20%. θ was then found to decrease to the original value (51°) when the benzene ratio increases to 100%. The contact angle, θ, for both benzene and HMDSO deposited films were found to increase with r.f. power. This signifies that the plasma polymerized organic films have substantially low surface energy as the r.f power increases. The corrosion resistance of aluminum alloy substrate both bare and covered with plasma polymerized thin films was carried out by potentiodynamic polarization measurements in standard 3.5 wt. % NaCl solution at room temperature. The results indicate that the benzene and HMDSO deposited films are suitable for protection of the aluminum substrate against corrosion. The changes in the processing parameters seem to have a strong influence on the film protective ability. Surface roughness of films deposited on aluminum alloy substrate was investigated using scanning electron microscopy (SEM). The SEM images indicate that the surface roughness of benzene deposited films increase with decreasing the benzene ratio. SEM images of benzene and HMDSO deposited films indicate that the surface roughness decreases with increasing r.f. power. Studying the above parameters indicate that the films produced are suitable for specific practical applications.

Design a Biodegradable Hydrogel for Drug Delivery System

In this article, we synthesize a novel chitosan -based superabsorbent hydrogel via graft copolymerization of mixtures acrylic acid (AA) and N-vinyl pyrollidon onto chitosan backbones. The polymerization reaction was carried out in an aqueous medium and in the presence of ammonium persulfate (APS) as an initiator and N,N'-methylene bisacrylamide (MBA) as a crosslinker.The hydrogel structures were confirmed by FTIR spectroscopy. The swelling behavior of these absorbent polymers was also investigated in various salt solutions. Results indicated that the swelling capacity decreased with an increase in the ionic strength of the swelling medium. Furthermore, the swelling of superabsorbing hydrogels was examined in solutions with pH values ranging between 1.0 and 13.0. It showed a reversible pH-responsive behavior at pHs 2.0 and 8.0. This on-off switching behavior makes the synthesized hydrogels as an excellent candidate for controlled delivery of bioactive agents.

Effect of UV-Treatment on Properties of Biodegradable Film From Rice Starch

Photo-crosslinked rice starch-based biodegradable films were prepared by casting film-solution on leveled trays and ultra violet (UV) irradiation was applied for 10 minute. The effect of the content (3%, 6% and 9 wt. %)of photosensitiser (sodium benzoate) on mechanical properties, water vapor permeability (WVP) and structural properties of rice starch films were investigated. The tensile strength increased while elongation at break and water resistance properties of rice starch films decreased with addition and increasing content of photosensitiser. The % crystallinity of rice starch films were decreased when the content of photosensitiser increased and UV were applied. The results showed that the carboxylate group band of sodium benzoate was found in the FTIR spectrum of rice starch films and found that incorporation of 6% of photosensitiser into the films showed a higher absorption band of resulted films. This result pointed out the highest interaction between starch molecules was occurred.

Novel D- glucose Based Glycomonomers Synthesis and Characterization

In the last decade, carbohydrates have attracted great attention as renewable resources for the chemical industry. Carbohydrates are abundantly found in nature in the form of monomers, oligomers and polymers, or as components of biopolymers and other naturally occurring substances. As natural products, they play important roles in conferring certain physical, chemical, and biological properties to their carrier molecules.The synthesis of this particular carbohydrate glycomonomer is part of our work to obtain biodegradable polymers. Our current paper describes the synthesis and characterization of a novel carbohydrate glycomonomer starting from D-glucose, in several synthesis steps, that involve the protection/deprotection of the D-glucose ring via acetylation, tritylation, then selective deprotection of the aromaticaliphatic protective group, in order to obtain 1,2,3,4-tetra-O-acetyl- 6-O-allyl-β-D-glucopyranose. The glycomonomer was then obtained by the allylation in drastic conditions of 1,2,3,4-tetra-O-acetyl-6-Oallyl- β-D-glucopyranose with allylic alcohol in the presence of stannic chloride, in methylene chloride, at room temperature. The proposed structure of the glycomonomer, 2,3,4-tri-O-acetyl-1,6-di- O-allyl-β-D-glucopyranose, was confirmed by FTIR, NMR and HPLC-MS spectrometry. This glycomonomer will be further submitted to copolymerization with certain acrylic or methacrylic monomers in order to obtain competitive plastic materials for applications in the biomedical field.

Biodiesel Production over nano-MgO Supported on Titania

Nano-MgO was successfully deposited on titania using deposition-precipitation method. The catalyst produced was characterised using FTIR, XRD, BET and XRF and its activity was tested on the transesterification reaction of soybean oil to biodiesel. The catalyst activity improved when the reaction temperature was increasedfrom 150 and 225 OC. It was also observed that increasing the reaction time above 1h had no significant benefit on conversion. The stability fixed MgO on TiO2 was investigated using XRF and ICP-OES. It was observed that MgO loss during the reaction was between 0.5-2.3 percent and that there was no correlation between the reaction temperature and the MgO loss.

Structural Characterization and Physical Properties of Antimicrobial (AM) Starch-Based Films

Antimicrobial (AM) starch-based films were developed by incorporating chitosan and lauric acid as antimicrobial agent into starch-based film. Chitosan has wide range of applications as a biomaterial, but barriers still exist to its broader use due to its physical and chemical limitations. In this work, a series of starch/chitosan (SC) blend films containing 8% of lauric acid was prepared by casting method. The structure of the film was characterized by Fourier transform infrared spectroscopy (FTIR), Xray diffraction (XRD), and scanning electron microscopy (SEM). The results indicated that there were strong interactions were present between the hydroxyl groups of starch and the amino groups of chitosan resulting in a good miscibility between starch and chitosan in the blend films. Physical properties and optical properties of the AM starch-based film were evaluated. The AM starch-based films incorporated with chitosan and lauric acid showed an improvement in water vapour transmission rate (WVTR) and addition of starch content provided more transparent films while the yellowness of the film attributed to the higher chitosan content. The improvement in water barrier properties was mainly attributed to the hydrophobicity of lauric acid and optimum chitosan or starch content. AM starch based film also showed excellent oxygen barrier. Obtaining films with good oxygen permeability would be an indication of the potential use of these antimicrobial packaging as a natural packaging and an alternative packaging to the synthetic polymer to protect food from oxidation reactions

Comparison of Ageing Deterioration of Silicone Rubber Outdoor Polymer Insulator under Salt Water Dip Wheel Test

This paper presents the experimental results on ageing deterioration of silicone rubber outdoor polymer insulator under salt water dip wheel test based on IEC 62217. In order to comparison effect of chemical contents, silicone rubber outdoor polymer insulators having same configuration and leakage distant from two manufactures were tested together continuously 30,000 test cycles. Many discharge activities were observed in during the test. After 30,000 test cycles, in spite of same configuration, differences in degree of surface aging were observed. Physical analysis such as decreasing in hydrophobicity and increasing in hardness measurement were measured on two-type tested specimen surface in order to confirm degree of surface ageing. Furthermore, chemical analysis by ATR-FTIR to diagnose the chemical change of tested specimen surface was conducted to confirm the physical analysis results.

Effect of Calcination Temperature and MgO Crystallite Size on MgO/TiO2 Catalyst System for Soybean Transesterification

The effect of calcination temperature and MgO crystallite sizes on the structure and catalytic performance of TiO2 supported nano-MgO catalyst for the trans-esterification of soybean oil has been studied. The catalyst has been prepared by deposition precipitation method, characterised by XRD and FTIR and tested in an autoclave at 225oC. The soybean oil conversion after 15 minutes of the trans-esterification reaction increased when the calcination temperature was increased from 500 to 600oC and decreased with further increase in calcination temperature. Some glycerolysis activity was also detected on catalysts calcined at 600 and 700oC after 45 minutes of reaction. The trans-esterification reaction rate increased with the decrease in MgO crystallite size for the first 30 min.

Acidity of different Jordanian Clays characterized by TPD-NH3 and MBOH Conversion

The acidity of different raw Jordanian clays containing zeolite, bentonite, red and white kaolinite and diatomite was characterized by means of temperature programmed desorption (TPD) of ammonia, conversion of 2-methyl-3-butyn-2-ol (MBOH), FTIR and BET-measurements. FTIR spectra proved presence of silanol and bridged hydroxyls on the clay surface. The number of acidic sites was calculated from experimental TPD-profiles. We observed the decrease of surface acidity correlates with the decrease of Si/Al ratio except for diatomite. On the TPD-plot for zeolite two maxima were registered due to different strength of surface acidic sites. Values of MBOH conversion, product yields and selectivity were calculated for the catalysis on Jordanian clays. We obtained that all clay samples are able to convert MBOH into a major product which is 3-methyl-3-buten-1-yne (MBYNE) catalyzed by acid surface sites with the selectivity close to 70%. There was found a correlation between MBOH conversion and acidity of clays determined by TPD-NH3, i.e. the higher the acidity the higher the conversion of MBOH. However, diatomite provided the lowest conversion of MBOH as result of poor polarization of silanol groups. Comparison of surface areas and conversions revealed the highest density of active sites for red kaolinite and the lowest for zeolite and diatomite.

Optical Limiting Characteristics of Core-Shell Nanoparticles

TiO2 nanoparticles were synthesized by hydrothermal method at 180°C from TiOSO4 aqueous solution with1m/l concentration. The obtained products were coated with silica by means of a seeded polymerization technique for a coating time of 1440 minutes to obtain well defined TiO2@SiO2 core-shell structure. The uncoated and coated nanoparticles were characterized by using X-Ray diffraction technique (XRD), Fourier Transform Infrared Spectroscopy (FT-IR) to study their physico-chemical properties. Evidence from XRD and FTIR results show that SiO2 is homogenously coated on the surface of titania particles. FTIR spectra show that there exists an interaction between TiO2 and SiO2 and results in the formation of Ti-O-Si chemical bonds at the interface of TiO2 particles and SiO2 coating layer. The non linear optical limiting properties of TiO2 and TiO2@SiO2 nanoparticles dispersed in ethylene glycol were studied at 532nm using 5ns Nd:YAG laser pulses. Three-photon absorption is responsible for optical limiting characteristics in these nanoparticles and it is seen that the optical nonlinearity is enhanced in core-shell structures when compared with single counterparts. This effective three-photon type absorption at this wavelength, is of potential application in fabricating optical limiting devices.

Kinetic, Thermodynamic and Process Modeling of Synthesis of UV Curable Glyceryl and Neopentyl Glycol Acrylates

Curing of paints by exposure to UV radiations is emerging as one of the best film forming technique as an alternative to traditional solvent borne oxidative and thermal curing coatings. The composition and chemistry of UV curable coatings and role of multifunctional and monofunctional monomers, oligomers, and photoinitiators have been discussed. The limitations imposed by thermodynamic equilibrium and tendency for acrylic double bond polymerizations during synthesis of multifunctional acrylates have been presented. Aim of present investigation was thus to explore the reaction variables associated with synthesis of multifunctional acrylates. Zirconium oxychloride was evaluated as catalyst against regular acid functional catalyst. The catalyzed synthesis of glyceryl acrylate and neopentyl glycol acrylate was conducted by variation of following reaction parameters: two different reactant molar ratios- 1:4 and 1:6; catalyst usage in % by moles on polyol- 2.5, 5.0 and 7.5 and two different reaction temperatures- 45 and 75 0C. The reaction was monitored by determination of acid value and hydroxy value at regular intervals, besides TLC, HPLC, and FTIR analysis of intermediates and products. On the basis of determination of reaction progress over 1-60 hrs, the esterification reaction was observed to follow 2nd order kinetics with rate constant varying from 1*10-4 to 7*10-4. The thermal and catalytic components of second order rate constant and energy of activation were also determined. Uses of these kinetic and thermodynamic parameters in design of reactor for manufacture of multifunctional acrylate ester have been presented. The synthesized multifunctional acrylates were used to formulate and apply UV curable clear coat followed by determination of curing characteristics and mechanical properties of cured film. The overall curing rates less than 05 min. were easily attained indicating economical viability of radiation curable system due to faster production schedules

Use of Agricultural Waste for the Removal of Nickel Ions from Aqueous Solutions: Equilibrium and Kinetics Studies

The potential of economically cheaper cellulose containing natural materials like rice husk was assessed for nickel adsorption from aqueous solutions. The effects of pH, contact time, sorbent dose, initial metal ion concentration and temperature on the uptake of nickel were studied in batch process. The removal of nickel was dependent on the physico-chemical characteristics of the adsorbent, adsorbate concentration and other studied process parameters. The sorption data has been correlated with Langmuir, Freundlich and Dubinin-Radush kevich (D-R) adsorption models. It was found that Freundlich and Langmuir isotherms fitted well to the data. Maximum nickel removal was observed at pH 6.0. The efficiency of rice husk for nickel removal was 51.8% for dilute solutions at 20 g L-1 adsorbent dose. FTIR, SEM and EDAX were recorded before and after adsorption to explore the number and position of the functional groups available for nickel binding on to the studied adsorbent and changes in surface morphology and elemental constitution of the adsorbent. Pseudo-second order model explains the nickel kinetics more effectively. Reusability of the adsorbent was examined by desorption in which HCl eluted 78.93% nickel. The results revealed that nickel is considerably adsorbed on rice husk and it could be and economic method for the removal of nickel from aqueous solutions.

Preparation and Characterization of Self Assembled Gold Nanoparticles on Amino Functionalized SiO2 Dielectric Core

Wet chemistry methods are used to prepare the SiO2/Au nanoshells. The purpose of this research was to synthesize gold coated SiO2 nanoshells for biomedical applications. Tunable nanoshells were prepared by using different colloidal concentrations. The nanoshells are characterized by FTIR, XRD, UV-Vis spectroscopy and atomic force microscopy (AFM). The FTIR results confirmed the functionalization of the surfaces of silica nanoparticles with NH2 terminal groups. A tunable absorption was observed between 470-600 nm with a maximum range of 530-560 nm. Based on the XRD results three main peaks of Au (111), (200) and (220) were identified. Also AFM results showed that the silica core diameter was about 100 nm and the thickness of gold shell about 10 nm.

Effects of Irradiation to Morphological, Physicochemical and Biocompatibility Properties of Carrageenan

The characterization of κ-carrageenan could provide a better understanding of its functions in biological, medical and industrial applications. Chemical and physical analyses of carrageenan from seaweeds, Euchema cottonii L., were done to offer information on its properties and the effects of Co-60 γ-irradiation on its thermochemical characteristics. The structural and morphological characteristics of κ-carrageenan were determined using scanning electron microscopy (SEM) while the composition, molecular weight and thermal properties were determined using attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), gel permeation chromatography (GPC), thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC). Further chemical analysis was done using hydrogen-1 nuclear magnetic resonance (1H NMR) and functional characteristics in terms of biocompatibility were evaluated using cytotoxicity test.

Nanocrystalline Na0.1V2O5.nH2O Xerogel Thin Film for Gas Sensing

Nanocrystalline thin film of Na0.1V2O5.nH2O xerogel obtained by sol gel synthesis was used as gas sensor. Gas sensing properties of different gases such as hydrogen, petroleum and humidity were investigated. Applying XRD and TEM the size of the nanocrystals is found to be 7.5 nm. SEM shows a highly porous structure with submicron meter-sized voids present throughout the sample. FTIR measurement shows different chemical groups identifying the obtained series of gels. The sample was n-type semiconductor according to the thermoelectric power and electrical conductivity. It can be seen that the sensor response curves from 130oC to 150oC show a rapid increase in sensitivity for all types of gas injection, low response values for heating period and the rapid high response values for cooling period. This result may suggest that this material is able to act as gas sensor during the heating and cooling process.

Study of Optical Properties of a Glutathione Capped Gold Nanoparticles Using Linker (MHDA) by Fourier Transform Infra Red Spectroscopy and Surface Enhanced Raman Scattering

16-Mercaptohexadecanoic acid (MHDA) and tripeptide glutathione conjugated with gold nanoparticles (Au-NPs) are characterized by Fourier Transform InfaRared (FTIR) spectroscopy combined with Surface-enhanced Raman scattering (SERS) spectroscopy. Surface Plasmon Resonance (SPR) technique based on FTIR spectroscopy has become an important tool in biophysics, which is perspective for the study of organic compounds. FTIR-spectra of MHDA shows the line at 2500 cm-1 attributed to thiol group which is modified by presence of Au-NPs, suggesting the formation of bond between thiol group and gold. We also can observe the peaks originate from characteristic chemical group. A Raman spectrum of the same sample is also promising. Our preliminary experiments confirm that SERS-effect takes place for MHDA connected with Au-NPs and enable us to detected small number (less than 106 cm-2) of MHDA molecules. Combination of spectroscopy methods: FTIR and SERS – enable to study optical properties of Au- NPs and immobilized bio-molecules in context of a bio-nano-sensors.