Exons and Introns Classification in Human and Other Organisms

In the paper, the relative performances on spectral classification of short exon and intron sequences of the human and eleven model organisms is studied. In the simulations, all combinations of sixteen one-sequence numerical representations, four threshold values, and four window lengths are considered. Sequences of 150-base length are chosen and for each organism, a total of 16,000 sequences are used for training and testing. Results indicate that an appropriate combination of one-sequence numerical representation, threshold value, and window length is essential for arriving at top spectral classification results. For fixed-length sequences, the precisions on exon and intron classification obtained for different organisms are not the same because of their genomic differences. In general, precision increases as sequence length increases.

Using Radial Basis Function Neural Networks to Calibrate Water Quality Model

Modern managements of water distribution system (WDS) need water quality models that are able to accurately predict the dynamics of water quality variations within the distribution system environment. Before water quality models can be applied to solve system problems, they should be calibrated. Although former researchers use GA solver to calibrate relative parameters, it is difficult to apply on the large-scale or medium-scale real system for long computational time. In this paper a new method is designed which combines both macro and detailed model to optimize the water quality parameters. This new combinational algorithm uses radial basis function (RBF) metamodeling as a surrogate to be optimized for the purpose of decreasing the times of time-consuming water quality simulation and can realize rapidly the calibration of pipe wall reaction coefficients of chlorine model of large-scaled WDS. After two cases study this method is testified to be more efficient and promising, and deserve to generalize in the future.

Optimization of Car Seat Considering Whiplash Injury

Development of motor car safety devices has reduced fatality rates in car accidents. Yet despite this increase in car safety, neck injuries resulting from rear impact collisions, particularly at low speed, remain a primary concern. In this study, FEA(Finite Element Analysis) of seat was performed to evaluate neck injuries in rear impact. And the FEA result was verified by comparison with the actual test results. The dummy used in FE model and actual test is BioRID II which is regarded suitable for rear impact collision analysis. A threshold of the BioRID II neck injury indicators was also proposed to upgrade seat performance in order to reduce whiplash injury. To optimize the seat for a low-speed rear impact collision, a method was proposed, which is multi-objective optimization idea using DOE (Design of Experiments) results.

Peer Assessment in the Context of Project-Based Learning Online

The pedagogy project has been proven as an active learning method, which is used to develop learner-s skills and knowledge.The use of technology in the learning world, has filed several gaps in the implementation of teaching methods, and online evaluation of learners. However, the project methodology presents challenges in the assessment of learners online. Indeed, interoperability between E-learning platforms (LMS) is one of the major challenges of project-based learning assessment. Firstly, we have reviewed the characteristics of online assessment in the context of project-based teaching. We addressed the constraints encountered during the peer evaluation process. Our approach is to propose a meta-model, which will describe a language dedicated to the conception of peer assessment scenario in project-based learning. Then we illustrate our proposal by an instantiation of the meta-model through a business process in a scenario of collaborative assessment on line.

Air Conditioning Energy Saving by Rooftop Greenery System in Subtropical Climate in Australia

The benefits of rooftop greenery systems (such as energy savings, reduction of greenhouse gas emission for mitigating climate change and maintaining sustainable development, indoor temperature control etc.) in buildings are well recognized, however there remains very little research conducted for quantifying the benefits in subtropical climates such as in Australia. This study mainly focuses on measuring/determining temperature profile and air conditioning energy savings by implementing rooftop greenery systems in subtropical Central Queensland in Australia. An experimental set-up was installed at Rockhampton campus of Central Queensland University, where two standard shipping containers (6m x 2.4m x 2.4m) were converted into small offices, one with green roof and one without. These were used for temperature, humidity and energy consumption data collection. The study found that an energy savings of up to 11.70% and temperature difference of up to 4°C can be achieved in March in subtropical Central Queensland climate in Australia. It is expected that more energy can be saved in peak summer days (December/February) as temperature difference between green roof and non-green roof is higher in December- February.

Adhesion Properties of Bifidobacterium Pseudocatenulatum G4 and Bifidobacterium Longum BB536 on HT-29 Human Epithelium Cell Line at Different Times and pH

Adhesion to the human intestinal cell is considered as one of the main selection criteria of lactic acid bacteria for probiotic use. The adhesion ability of two Bifidobacteriums strains Bifidobacterium longum BB536 and Bifidobacterium psudocatenulatum G4 was done using HT-29 human epithelium cell line as in vitro study. Four different level of pH were used 5.6, 5.7, 6.6, and 6.8 with four different times 15, 30, 60, and 120 min. Adhesion was quantified by counting the adhering bacteria after Gram staining. The adhesion of B. longum BB536 was higher than B. psudocatenulatum G4. Both species showed significant different in the adhesion properties at the factors tested. The highest adhesion for both Bifidobacterium was observed at 120 min and the low adhesion was in 15 min. The findings of this study will contribute to the introduction of new effective probiotic strain for future utilization.

High Voltage Driver Design for Actuating a MOEMS Mirror Array

In this paper we present a new multichannel high voltage driver box to connect up to six MOEMS mirror devices to it that have resonant and also quasistatically driven actuating electrodes. It is possible to drive all resonant axes synchronously while the amplitude of them can individually be controlled by separate microcontrollers that also operate the quasistatic axes. Circuit simulations are compared with the measurements done on the real system and also show the robust driving performance of a MOEMS mirror.

Knowledge Transfer in Industrial Clusters

This paper aims at identifying and analyzing the knowledge transmission channels in textile and clothing clusters located in Brazil and in Europe. Primary data was obtained through interviews with key individuals. The collection of primary data was carried out based on a questionnaire with ten categories of indicators of knowledge transmission. Secondary data was also collected through a literature review and through international organizations sites. Similarities related to the use of the main transmission channels of knowledge are observed in all cases. The main similarities are: influence of suppliers of machinery, equipment and raw materials; imitation of products and best practices; training promoted by technical institutions and businesses; and cluster companies being open to acquire new knowledge. The main differences lie in the relationship between companies, where in Europe the intensity of this relationship is bigger when compared to Brazil. The differences also occur in importance and frequency of the relationship with the government, with the cultural environment, and with the activities of research and development. It is also found factors that reduce the importance of geographical proximity in transmission of knowledge, and in generating trust and the establishment of collaborative behavior.

Development and Assessment of Measuring/Rehabilitation Device for Myelopathy Patients with Lower Extremity Function

Disordered function of maniphalanx and difficulty with ambulation will occur insofar as a human has a failure in the spinal marrow. Cervical spondylotic myelopathy as one of the myelopathy emanates from not only external factors but also increased age. In addition, the diacrisis is difficult since cervical spondylotic myelopathy is evaluated by a doctor-s neurological remark and imaging findings. As a quantitative method for measuring the degree of disability, hand-operated triangle step test (for short, TST) has formulated. In this research, a full automatic triangle step counter apparatus is designed and developed to measure the degree of disability in an accurate fashion according to the principle of TST. The step counter apparatus whose shape is a low triangle pole displays the number of stepping upon each corner. Furthermore, the apparatus has two modes of operation. Namely, one is for measuring the degree of disability and the other for rehabilitation exercise. In terms of usefulness, clinical practice should be executed before too long.

A Case of Study for 3D Stereoscopic Conversion in Visual Effects Industry

This paper covered a series of key points in terms of 2D to 3D stereoscopic conversion. A successfully applied stereoscopic conversion approach in current visual effects industry was presented. The purpose of this paper is to cover a detailed workflow and concept, which has been successfully used in 3D stereoscopic conversion for feature films in visual effects industry, and therefore to clarify the process in stereoscopic conversion production and provide a clear idea for those entry-level artists to improve an overall understanding of 3D stereoscopic in digital compositing field as well as to the higher education factor of visual effects and hopefully inspire further collaboration and participants particularly between academia and industry.

Automatic Removal of Ocular Artifacts using JADE Algorithm and Neural Network

The ElectroEncephaloGram (EEG) is useful for clinical diagnosis and biomedical research. EEG signals often contain strong ElectroOculoGram (EOG) artifacts produced by eye movements and eye blinks especially in EEG recorded from frontal channels. These artifacts obscure the underlying brain activity, making its visual or automated inspection difficult. The goal of ocular artifact removal is to remove ocular artifacts from the recorded EEG, leaving the underlying background signals due to brain activity. In recent times, Independent Component Analysis (ICA) algorithms have demonstrated superior potential in obtaining the least dependent source components. In this paper, the independent components are obtained by using the JADE algorithm (best separating algorithm) and are classified into either artifact component or neural component. Neural Network is used for the classification of the obtained independent components. Neural Network requires input features that exactly represent the true character of the input signals so that the neural network could classify the signals based on those key characters that differentiate between various signals. In this work, Auto Regressive (AR) coefficients are used as the input features for classification. Two neural network approaches are used to learn classification rules from EEG data. First, a Polynomial Neural Network (PNN) trained by GMDH (Group Method of Data Handling) algorithm is used and secondly, feed-forward neural network classifier trained by a standard back-propagation algorithm is used for classification and the results show that JADE-FNN performs better than JADEPNN.

XML Integration of Data from CloudSat Satellite and GMS-6 Water Vapor Satellite

This study aimed at developing visualization tools for integrating CloudSat images and Water Vapor Satellite images. KML was used for integrating data from CloudSat Satellite and GMS-6 Water Vapor Satellite. CloudSat 2D images were transformed into 3D polygons in order to achieve 3D images. Before overlaying the images on Google Earth, GMS-6 water vapor satellite images had to be rescaled into linear images. Web service was developed using webMathematica. Shoreline from GMS-6 images was compared with shoreline from LandSat images on Google Earth for evaluation. The results showed that shoreline from GMS-6 images was highly matched with the shoreline in LandSat images from Google Earth. For CloudSat images, the visualizations were compared with GMS-6 images on Google Earth. The results showed that CloudSat and GMS-6 images were highly correlated.

Data-organization Before Learning Multi-Entity Bayesian Networks Structure

The objective of our work is to develop a new approach for discovering knowledge from a large mass of data, the result of applying this approach will be an expert system that will serve as diagnostic tools of a phenomenon related to a huge information system. We first recall the general problem of learning Bayesian network structure from data and suggest a solution for optimizing the complexity by using organizational and optimization methods of data. Afterward we proposed a new heuristic of learning a Multi-Entities Bayesian Networks structures. We have applied our approach to biological facts concerning hereditary complex illnesses where the literatures in biology identify the responsible variables for those diseases. Finally we conclude on the limits arched by this work.

Collaborative Design System based on Object-Oriented Modeling of Supply Chain Simulation: A Case Study of Thai Jewelry Industry

The paper proposes a new concept in developing collaborative design system. The concept framework involves applying simulation of supply chain management to collaborative design called – 'SCM–Based Design Tool'. The system is developed particularly to support design activities and to integrate all facilities together. The system is aimed to increase design productivity and creativity. Therefore, designers and customers can collaborate by the system since conceptual design. JAG: Jewelry Art Generator based on artificial intelligence techniques is integrated into the system. Moreover, the proposed system can support users as decision tool and data propagation. The system covers since raw material supply until product delivery. Data management and sharing information are visually supported to designers and customers via user interface. The system is developed on Web–assisted product development environment. The prototype system is presented for Thai jewelry industry as a system prototype demonstration, but applicable for other industry.

Organizational Culture and Innovation Adoption/Generation: A Proposed Model for Architectural Firms

Organizational culture fosters innovation, and innovation is the main engine to be sustained within the uncertainty market. Like other countries, the construction industry significantly contributes to the economy, society and technology of Malaysia, yet, innovation is still considered slow compared to other industries such as manufacturing. Given the important role of an architect as the key player and the contributor of new ideas in the construction industry, there is a call to identify the issue and improve the current situation by focusing on the architectural firms. In addition, the existing studies tend to focus only on a few dimensions of organizational culture and very few studies consider whether innovation is being generated or adopted. Hence, the present research tends to fill in the gap by identifying the organizational cultures that foster or hinder innovation generation and/or innovation adoption, and propose a model of organizational culture and innovation generation and/or adoption.

Are Economic Crises and Government Changes Related? A Descriptive Statistic Analysis

The main purpose of this study is to provide a detailed statistical overview of the time and regional distribution, relative timing occurrence of economic crises and government changes in 51 economies over the 1990–2007 periods. At the same time, the predictive power of the economic crises on set government changes will be examined using “signal approach". The result showed that the percentage of government changes is highest in transition economies (86 percent of observations) and lowest in Latin American economies (39 percent of observations). The percentages of government changes are same in both developed and developing countries (43 percent of observations). However, average crises per year (frequency of crises) are higher (lower) in developing (developed) countries than developed (developing) countries. Also, the predictive power of economic crises about the onset of a government change is highest in Transition economies (81 percent) and lowest in Latin American countries (30 percent). The predictive power of economic crises in developing countries (43 percent) is lower than developed countries (55 percent).

Power System Damping Using Hierarchical Fuzzy Multi- Input Power System Stabilizer and Static VAR Compensator

This paper proposes the application of a hierarchical fuzzy system (HFS) based on multi-input power system stabilizer (MPSS) and also Static Var Compensator (SVC) in multi-machine environment.The number of rules grows exponentially with the number of variables in a conventional fuzzy logic system. The proposed HFS method is developed to solve this problem. To reduce the number of rules the HFS consists of a number of low-dimensional fuzzy systems in a hierarchical structure. In fact, by using HFS the total number of involved rules increases only linearly with the number of input variables. In the MPSS, to have better efficiency an auxiliary signal of reactive power deviation (ΔQ) is added with ΔP+ Δω input type Power system stabilizer (PSS). Phasor model of SVC is described and used in this paper. The performances of MPSS, Conventional power system stabilizer (CPSS), hierarchical Fuzzy Multi-input Power System Stabilizer (HFMPSS) and the proposed method in damping inter-area mode of oscillation are examined in response to disturbances. By using digital simulations the comparative study is illustrated. It can be seen that the proposed PSS is performing satisfactorily within the whole range of disturbances.

Improvement in Silicon on Insulator Devices using Strained Si/SiGe Technology for High Performance in RF Integrated Circuits

RF performance of SOI CMOS device has attracted significant amount of interest recently. In order to improve RF parameters, Strained Si/Relaxed Si0.8Ge0.2 investigated as a replacement for Si technology .Enhancement of carrier mobility associated with strain engineering makes Strained Si a promising candidate for improving RF performance of CMOS technology. From the simulation, the cut-off frequency is estimated to be 224 GHZ, whereas in SOI at similar bias is about 188 GHZ. Therefore, Strained Si exhibits 19% improvement in cut-off frequency over similar Si counterpart. In this paper, Ion/Ioff ratio is studied as one of the key parameters in logic and digital application. Strained Si/SiGe demonstrates better Ion/Ioff characteristic than SOI, in similar channel length of 100 nm.Another important key analog figures of merit such as Early Voltage (VEA) ,transconductance vs drain current (gm /Ids) are studied. They introduce the efficiency of the devices to convert dc power into ac frequency.

Depressing Turbine-Generator Supersynchronous Torsional Torques by Using Virtual Inertia

Single-pole switching scheme is widely used in the Extra High Voltage system. However, the substantial negativesequence current injected to the turbine-generators imposes the electromagnetic (E/M) torque of double system- frequency components during the dead time (between single-pole clearing and line reclosing). This would induce supersynchronous resonance (SPSR) torque amplifications on low pressure turbine generator blades and even lead to fatigue damage. This paper proposes the design of a mechanical filter (MF) with natural frequency close to double-system frequency. From the simulation results, it is found that such a filter not only successfully damps the resonant effect, but also has the characteristics of feasibility and compact.

RRNS-Convolutional Concatenated Code for OFDM based Wireless Communication with Direct Analog-to-Residue Converter

The modern telecommunication industry demands higher capacity networks with high data rate. Orthogonal frequency division multiplexing (OFDM) is a promising technique for high data rate wireless communications at reasonable complexity in wireless channels. OFDM has been adopted for many types of wireless systems like wireless local area networks such as IEEE 802.11a, and digital audio/video broadcasting (DAB/DVB). The proposed research focuses on a concatenated coding scheme that improve the performance of OFDM based wireless communications. It uses a Redundant Residue Number System (RRNS) code as the outer code and a convolutional code as the inner code. Here, a direct conversion of analog signal to residue domain is done to reduce the conversion complexity using sigma-delta based parallel analog-to-residue converter. The bit error rate (BER) performances of the proposed system under different channel conditions are investigated. These include the effect of additive white Gaussian noise (AWGN), multipath delay spread, peak power clipping and frame start synchronization error. The simulation results show that the proposed RRNS-Convolutional concatenated coding (RCCC) scheme provides significant improvement in the system performance by exploiting the inherent properties of RRNS.