Speciation of Iron (III) Oxide Nanoparticles and Other Paramagnetic Intermediates during High-Temperature Oxidative Pyrolysis of 1-Methylnaphthalene

Low Temperature Matrix Isolation - Electron Paramagnetic Resonance (LTMI-EPR) Spectroscopy was utilized to identify the species of iron oxide nanoparticles generated during the oxidative pyrolysis of 1-methylnaphthalene (1-MN). The otherwise gas-phase reactions of 1--MN were impacted by a polypropylenimine tetra-hexacontaamine dendrimer complexed with iron (III) nitrate nonahydrate diluted in air under atmospheric conditions. The EPR fine structure of Fe (III)2O3 nanoparticles clusters, characterized by gfactors of 2.00, 2.28, 3.76 and 4.37 were detected on a cold finger maintained at 77 K after accumulation over a multitude of experiments. Additionally, a high valence Fe (IV) paramagnetic intermediate and superoxide anion-radicals, O2•- adsorbed on nanoparticle surfaces in the form of Fe (IV) --- O2•- were detected from the quenching area of Zone 1 in the gas-phase.

Study of Natural Convection Heat Transfer of Plate-Fin Heat Sink in a Closed Enclosure

The present study applies the inverse method and three-dimensional CFD commercial software in conjunction with the experimental temperature data to investigate the heat transfer and fluid flow characteristics of the plate-fin heat sink in a rectangular closed enclosure. The inverse method with the finite difference method and the experimental temperature data is applied to determine the approximate heat transfer coefficient. Later, based on the obtained results, the zero-equation turbulence model is used to obtain the heat transfer and fluid flow characteristics between two fins. T0 validate the accuracy of the results obtained, the comparison of the heat transfer coefficient is made. The obtained temperature at selected measurement locations of the fin is also compared with experimental data. The effect of the height of the rectangular enclosure on the obtained results is discussed.

Investigation of Genetic Variation for Agronomic Traits among the Recombinant Inbred Lines of Wheat from the Norstar × Zagross Cross under Water Stress Condition

Determination of genetic variation is useful for plant breeding and hence production of more efficient plant species under different conditions, like drought stress. In this study a sample of 28 recombinant inbred lines (RILs) of wheat developed from the cross of Norstar and Zagross varieties, together with their parents, were evaluated for two years (2010-2012) under normal and water stress conditions using split plot design with three replications. Main plots included two irrigation treatments of 70 and 140 mm evaporation from Class A pan and sub-plots consisted of 30 genotypes. The effect of genotypes and interaction of genotypes with years and water regimes were significant for all characters. Significant genotypic effect implies the existence of genetic variation among the lines under study. Heritability estimates were high for 1000 grain weight (0.87). Biomass and grain yield showed the lowest heritability values (0.42 and 0.50, respectively). Highest genotypic and phenotypic coefficients of variation (GCV and PCV) belonged to harvest index. Moderate genetic advance for most of the traits suggested the feasibility of selection among the RILs under investigation. Some RILs were higher yielding than either parent at both environments.

Analysis of Design Structuring and Performance of CPW Fed UWB Antenna in Presence of Human Arm Model

A compact Ultra Wide Band (UWB) antenna with coplanar waveguide feed has been designed and results are verified in this paper. The antenna has been designed on FR4 substrate with dielectric constant (εr) of 4.4 and dimensions of 32mm x 26mm x 0.8mm. The presented antenna shows return loss characteristics in the band of 3.1 to 10.6 GHz as prescribed by FCC, USA. Parametric studies have been done and results thus obtained have been presented. Simulated results have been verified on Rohde & Swartz VNA. The measured results are in good agreement with simulated results which make the presented antenna suitable to be used for wearable applications. Performance analysis of antenna has also been shown in the presence of three layered Human Arm model. Results obtained in presence of Human Arm model has been compared with that in free space.

Characterization of Brewery Wastewater Composition

Industries produce millions of cubic meters of effluent every year and the wastewater produced may be released into the surrounding water bodies, treated on-site or at municipal treatment plants. The determination of organic matter in the wastewater generated is very important to avoid any negative effect on the aquatic ecosystem. The scope of the present work is to assess the physicochemical composition of the wastewater produced from one of the brewery industry in South Africa. This is to estimate the environmental impact of its discharge into the receiving water bodies or the municipal treatment plant. The parameters monitored for the quantitative analysis of brewery wastewater include biological oxygen demand (BOD5), chemical oxygen demand (COD), total suspended solids, volatile suspended solids, ammonia, total oxidized nitrogen, nitrate, nitrite, phosphorus and alkalinity content. In average, the COD concentration of the brewery effluent was 5340.97 mg/l with average pH values of 4.0 to 6.7. The BOD5 and the solids content of the wastewater from the brewery industry were high. This means that the effluent is very rich in organic content and its discharge into the water bodies or the municipal treatment plant could cause environmental pollution or damage the treatment plant. In addition, there were variations in the wastewater composition throughout the monitoring period. This might be as a result of different activities that take place during the production process, as well as the effects of peak period of beer production on the water usage.

Phytotoxicity of Lead on the Physiological Parameters of Two Varieties of Broad Bean (Vicia faba)

The phytotoxicity of heavy metals can be expressed on roots and visible part of plants and is characterized by molecular and metabolic answers at various levels of organization of the whole plant. The present study was undertaken on two varieties of broad bean Vicia faba (Sidi Aïch and Super Aguadulce). The device was mounted on a substrate prepared by mixing sand, soil and compost, the substrate was artificially contaminated with three doses of lead nitrate [Pb(NO3)2] 0, 500 and 1000 ppm. Our objective is to follow the behavior of plant opposite the stress by evaluating the physiological parameters. The results reveal a reduction in the parameters of the productivity (chlorophyll and proteins production) with an increase in the osmoregulators (soluble sugars and proline).These results show that the production of broad bean is strongly modified by the disturbance of its internal physiology under lead exposure.

Preparation of Corn Flour Based Extruded Product and Evaluate Its Physical Characteristics

The composite flour blend consisting of corn, pearl millet, black gram and wheat bran in the ratio of 80:5:10:5 was taken to prepare the extruded product and their effect on physical properties of extrudate was studied. The extrusion process was conducted in laboratory by using twin screw extruder. The physical characteristics evaluated include lateral expansion, bulk density, water absorption index, water solubility index, and rehydration ratio and moisture retention. The Central Composite Rotatable Design (CCRD) was used to decide the level of processing variables i.e. feed moisture content (%), screw speed (rpm), and barrel temperature (oC) for the experiment. The data obtained after extrusion process were analyzed by using response surface methodology. A second order polynomial model for the dependent variables was established to fit the experimental data. The numerical optimization studies resulted in 127°C of barrel temperature, 246 rpm of screw speed, and 14.5% of feed moisture as optimum variables to produce acceptable extruded product. The responses predicted by the software for the optimum process condition resulted in lateral expansion 126%, bulk density 0.28 g/cm3, water absorption index 4.10 g/g, water solubility index 39.90%, rehydration ratio 544% and moisture retention 11.90% with 75% desirability.

Starting Torque Study of Darrieus Wind Turbine

The aim of our study is to project an optimized wind turbine of Darrieus type. This type of wind turbine is characterized by a low starting torque in comparison with the Savonius rotor allowing them to operate for a period greater than wind speed. This led us to reconsider the Darrieus rotor to optimize a design which will increase its starting torque. The study of a system of monitoring and control of the angle of attack of blade profile, which allows an auto start to wind speeds as low as possible is presented for the straight blade of Darrieus turbine. The study continues to extend to other configurations namely those of parabolic type.

Evaluation of Dynamic Behavior a Machine Tool Spindle System through Modal and Unbalance Response Analysis

The spindle system is one of the most important components of machine tool. The dynamic properties of the spindle affect the machining productivity and quality of the work pieces. Thus, it is important and necessary to determine its dynamic characteristics of spindles in the design and development in order to avoid forced resonance. The finite element method (FEM) has been adopted in order to obtain the dynamic behavior of spindle system. For this reason, obtaining the Campbell diagrams and determining the critical speeds are very useful to evaluate the spindle system dynamics. The unbalance response of the system to the center of mass unbalance at the cutting tool is also calculated to investigate the dynamic behavior. In this paper, we used an ANSYS Parametric Design Language (APDL) program which based on finite element method has been implemented to make the full dynamic analysis and evaluation of the results. Results show that the calculated critical speeds are far from the operating speed range of the spindle, thus, the spindle would not experience resonance, and the maximum unbalance response at operating speed is still with acceptable limit. ANSYS Parametric Design Language (APDL) can be used by spindle designer as tools in order to increase the product quality, reducing cost, and time consuming in the design and development stages.

High Gain Circularly Polarized Wire Antenna for DSRC Applications

In this communication, a low-cost circularly polarized wire antenna exhibiting improved gain performance for Dedicated Short Range Communications (DSRC), vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications is presented. The proposed antenna comprises a Y-shaped quarterwavelength monopole antenna surrounded by two iterations of eight conductive arched walls acting as parasitic elements to enhance the overall antenna gain and to shape the radiation pattern in the H-plane. A hemispherical radome shell is added to protect the antenna structure and its effect on the antenna performance is discussed. The designed antenna demonstrates antenna gain of 8.2 dB with omnidirectional far-field radiation pattern in the H-plane. The gain of the proposed antenna is also compared with the characteristic of the stand-alone Y-shaped monopole to highlight the advantages of the proposed approach.

Banking Union: A New Step towards Completing the Economic and Monetary Union

This study analyzes the critical gaps in the architecture of European stability and the expected role of the banking union as the new important step towards completing the Economic and Monetary Union that should enable the creation of safe and sound financial sector for the euro area market. The single rulebook together with the Single Supervisory Mechanism and the Single Resolution Mechanism - as two main pillars of the banking union, should provide a consistent application of common rules and administrative standards for supervision, recovery and resolution of banks – with the final aim of replacing the former bail-out practice with the bail-in system through which possible future bank failures would be resolved by their own funds, i.e. with minimal costs for taxpayers and real economy. In this way, the vicious circle between banks and sovereigns would be broken. It would also reduce the financial fragmentation recorded in the years of crisis as the result of divergent behaviors in risk premium, lending activities and interest rates between the core and the periphery. In addition, it should strengthen the effectiveness of monetary transmission channels, in particular the credit channels and overflows of liquidity on the money market which, due to the fragmentation of the common financial market, has been significantly disabled in period of crisis. However, contrary to all the positive expectations related to the future functioning of the banking union, major findings of this study indicate that characteristics of the economic system in which the banking union will operate should not be ignored. The euro area is an integration of strong and weak entities with large differences in economic development, wealth, assets of banking systems, growth rates and accountability of fiscal policy. The analysis indicates that low and unbalanced economic growth remains a challenge for the maintenance of financial stability and this problem cannot be resolved just by a single supervision. In many countries bank assets exceed their GDP by several times and large banks are still a matter of concern, because of their systemic importance for individual countries and the euro zone as a whole. The creation of the Single Supervisory Mechanism and the Single Resolution Mechanism is a response to the European crisis, which has particularly affected peripheral countries and caused the associated loop between the banking crisis and the sovereign debt crisis, but has also influenced banks’ balance sheets in the core countries, as the result of crossborder capital flows. The creation of the SSM and the SRM should prevent the similar episodes to happen again and should also provide a new opportunity for strengthening of economic and financial systems of the peripheral countries. On the other hand, there is a potential threat that future focus of the ECB, resolution mechanism and other relevant institutions will be extremely oriented towards large and significant banks (whereby one half of them operate in the core and most important euro area countries), and therefore it remains questionable to what extent will the common resolution funds will be used for rescue of less important institutions. Recent geopolitical developments will be the optimal indicator to show whether the previously established mechanisms are sufficient enough to maintain the adequate financial stability in the euro area market.

Multi-Objective Optimization in End Milling of Al-6061 Using Taguchi Based G-PCA

In this study, a multi objective optimization for end milling of Al 6061 alloy has been presented to provide better surface quality and higher Material Removal Rate (MRR). The input parameters considered for the analysis are spindle speed, depth of cut and feed. The experiments were planned as per Taguchis design of experiment, with L27 orthogonal array. The Grey Relational Analysis (GRA) has been used for transforming multiple quality responses into a single response and the weights of the each performance characteristics are determined by employing the Principal Component Analysis (PCA), so that their relative importance can be properly and objectively described. The results reveal that Taguchi based G-PCA can effectively acquire the optimal combination of cutting parameters.

Back Bone Node Based Black Hole Detection Mechanism in Mobile Ad Hoc Networks

Mobile Ad hoc Network is a set of self-governing nodes which communicate through wireless links. Dynamic topology MANETs makes routing a challenging task. Various routing protocols are there, but due to various fundamental characteristic open medium, changing topology, distributed collaboration and constrained capability, these protocols are tend to various types of security attacks. Black hole is one among them. In this attack, malicious node represents itself as having the shortest path to the destination but that path not even exists. In this paper, we aim to develop a routing protocol for detection and prevention of black hole attack by modifying AODV routing protocol. This protocol is able to detect and prevent the black hole attack. Simulation is done using NS-2, which shows the improvement in network performance.

Investigation of Chord Protocol in Peer to Peer-Wireless Mesh Network with Mobility

File sharing in networks is generally achieved using Peer-to-Peer (P2P) applications. Structured P2P approaches are widely used in adhoc networks due to its distributed and scalability features. Efficient mechanisms are required to handle the huge amount of data distributed to all peers. The intrinsic characteristics of P2P system makes for easier content distribution when compared to client-server architecture. All the nodes in a P2P network act as both client and server, thus, distributing data takes lesser time when compared to the client-server method. CHORD protocol is a resource routing based where nodes and data items are structured into a 1- dimensional ring. The structured lookup algorithm of Chord is advantageous for distributed P2P networking applications. However, structured approach improves lookup performance in a high bandwidth wired network it could contribute to unnecessary overhead in overlay networks leading to degradation of network performance. In this paper, the performance of existing CHORD protocol on Wireless Mesh Network (WMN) when nodes are static and dynamic is investigated.

Starting Characteristic Analysis of LSPM for Pumping System Considering Demagnetization

This paper presents the design process of a high performance 3-phase 3.7 kW 2-pole line start permanent magnet synchronous motor for pumping system. A method was proposed to study the starting torque characteristics considering line start with high inertia load. A d-q model including cage was built to study the synchronization capability. Time-stepping finite element method analysis was utilized to accurately predict the dynamic and transient performance, efficiency, starting current, speed curve and etc. Considering the load torque of pumps during starting stage, the rotor bar was designed with minimum demagnetization of permanent magnet caused by huge starting current.

On the Optimality Assessment of Nanoparticle Size Spectrometry and Its Association to the Entropy Concept

Particle size distribution, the most important characteristics of aerosols, is obtained through electrical characterization techniques. The dynamics of charged nanoparticles under the influence of electric field in Electrical Mobility Spectrometer (EMS) reveals the size distribution of these particles. The accuracy of this measurement is influenced by flow conditions, geometry, electric field and particle charging process, therefore by the transfer function (transfer matrix) of the instrument. In this work, a wire-cylinder corona charger was designed and the combined fielddiffusion charging process of injected poly-disperse aerosol particles was numerically simulated as a prerequisite for the study of a multichannel EMS. The result, a cloud of particles with no uniform charge distribution, was introduced to the EMS. The flow pattern and electric field in the EMS were simulated using Computational Fluid Dynamics (CFD) to obtain particle trajectories in the device and therefore to calculate the reported signal by each electrometer. According to the output signals (resulted from bombardment of particles and transferring their charges as currents), we proposed a modification to the size of detecting rings (which are connected to electrometers) in order to evaluate particle size distributions more accurately. Based on the capability of the system to transfer information contents about size distribution of the injected particles, we proposed a benchmark for the assessment of optimality of the design. This method applies the concept of Von Neumann entropy and borrows the definition of entropy from information theory (Shannon entropy) to measure optimality. Entropy, according to the Shannon entropy, is the ''average amount of information contained in an event, sample or character extracted from a data stream''. Evaluating the responses (signals) which were obtained via various configurations of detecting rings, the best configuration which gave the best predictions about the size distributions of injected particles, was the modified configuration. It was also the one that had the maximum amount of entropy. A reasonable consistency was also observed between the accuracy of the predictions and the entropy content of each configuration. In this method, entropy is extracted from the transfer matrix of the instrument for each configuration. Ultimately, various clouds of particles were introduced to the simulations and predicted size distributions were compared to the exact size distributions.

Oat Grain Functional Ingredient Characterization

Grains, including oats (Avena sativa L.), have been recognized functional foods, because provide beneficial effect on the health of the consumer and decrease the risk of various diseases. Oats are good source of soluble fibre, essential amino acids, unsaturated fatty acids, vitamins and minerals. Oat breeders have developed oat varieties and improved yielding ability potential of oat varieties. Therefore, the aim of investigation was to analyze the composition of perspective oat varieties and breeding lines grains grown in different conditions and evaluate functional properties. In the studied samples content of protein, starch, β-glucans, total dietetic fibre, composition of amino acids and vitamin E were determined. The results of analysis showed that protein content depending of varieties ranged 9.70% to 17.30% total dietary fibre 13.66 g100g-1 to 30.17 g100g-1, content of β-glucans 2.7 g100g-1 to 3.5 g100g-1, amount of vitamin E (α-tocopherol) determined from 4 mgkg-1 to 9.9 mgkg-1. The sums of essential amino acids in oat grain samples were determined from 31.63 gkg-1 to 54.90 gkg-1. It is concluded that amino acids composition of husked and naked oats grown in organic or conventional conditions is close to optimal for human health.

Influence of Synthetic Antioxidant in the Iodine Value and Acid Number of Jatropha Curcas Biodiesel

Biodiesel is one of the alternative fuels that promising for substituting petro diesel as energy source which is advantage on sustainability and ecofriendly. Due to the raw material that tend to decompose during storage, biodiesel also have the same characteristic that tend to decompose and formed higher acid value which is the result of oxidation to double bond on a chain of ester. Decomposition of biodiesel due to oxidation reaction could prevent by introduce a small amount of antioxidant. The origin of raw materials and the process for producing biodiesel will determine the effectiveness of antioxidant. The quality degradation on biodiesel could evaluate by measuring iodine value and acid number of biodiesel. Biodiesel made from high fatty acid Jatropha curcas oil by using esterification and transesterification process will stand on the quality by introduce 90 ppm pyrogallol powder on the biodiesel, which could increase Induction period time from 2 hours to more than 6 hours in rancimat test evaluation.

Effects of Cerium Oxide Nanoparticle Addition in Diesel and Diesel-Biodiesel Blends on the Performance Characteristics of a CI Engine

An experimental investigation is carried out to establish the performance characteristics of a compression ignition engine while using cerium oxide nanoparticles as additive in neat diesel and diesel-biodiesel blends. In the first phase of the experiments, stability of neat diesel and diesel-biodiesel fuel blends with the addition of cerium oxide nanoparticles is analyzed. After series of experiments, it is found that the blends subjected to high speed blending followed by ultrasonic bath stabilization improves the stability. In the second phase, performance characteristics are studied using the stable fuel blends in a single cylinder four stroke engine coupled with an electrical dynamometer and a data acquisition system. The cerium oxide acts as an oxygen donating catalyst and provides oxygen for combustion. The activation energy of cerium oxide acts to burn off carbon deposits within the engine cylinder at the wall temperature and prevents the deposition of non-polar compounds on the cylinder wall results reduction in HC emissions. The tests revealed that cerium oxide nanoparticles can be used as additive in diesel and diesel-biodiesel blends to improve complete combustion of the fuel significantly.

Effect of Silver Nanoparticles on Seed Germination of Crop Plants

The use of engineered nanomaterials has increased as a result of their positive impact on many sectors of the economy, including agriculture. Silver nanoparticles (AgNPs) are now used to enhance seed germination, plant growth, and photosynthetic quantum efficiency and as antimicrobial agents to control plant diseases. In this study, we examined the effect of AgNP dosage on the seed germination of three plant species: corn (Zea mays L.), watermelon (Citrullus lanatus [Thunb.] Matsum. & Nakai) and zucchini (Cucurbita pepo L.). This experiment was designed to study the effect of AgNPs on germination percentage, germination rate, mean germination time, root length and fresh and dry weight of seedlings for the three species. Seven concentrations (0.05, 0.1, 0.5, 1, 1.5, 2 and 2.5 mg/ml) of AgNPs were examined at the seed germination stage. The three species had different dose responses to AgNPs in terms of germination parameters and the measured growth characteristics. The germination rates of the three plants were enhanced in response to AgNPs. Significant enhancement of the germination percentage values was observed after treatment of the watermelon and zucchini plants with AgNPs in comparison with untreated seeds. AgNPs showed a toxic effect on corn root elongation, whereas watermelon and zucchini seedling growth were positively affected by certain concentrations of AgNPs. This study showed that exposure to AgNPs caused both positive and negative effects on plant growth and germination.