Effect of Silver Nanoparticles on Seed Germination of Crop Plants

The use of engineered nanomaterials has increased as a result of their positive impact on many sectors of the economy, including agriculture. Silver nanoparticles (AgNPs) are now used to enhance seed germination, plant growth, and photosynthetic quantum efficiency and as antimicrobial agents to control plant diseases. In this study, we examined the effect of AgNP dosage on the seed germination of three plant species: corn (Zea mays L.), watermelon (Citrullus lanatus [Thunb.] Matsum. & Nakai) and zucchini (Cucurbita pepo L.). This experiment was designed to study the effect of AgNPs on germination percentage, germination rate, mean germination time, root length and fresh and dry weight of seedlings for the three species. Seven concentrations (0.05, 0.1, 0.5, 1, 1.5, 2 and 2.5 mg/ml) of AgNPs were examined at the seed germination stage. The three species had different dose responses to AgNPs in terms of germination parameters and the measured growth characteristics. The germination rates of the three plants were enhanced in response to AgNPs. Significant enhancement of the germination percentage values was observed after treatment of the watermelon and zucchini plants with AgNPs in comparison with untreated seeds. AgNPs showed a toxic effect on corn root elongation, whereas watermelon and zucchini seedling growth were positively affected by certain concentrations of AgNPs. This study showed that exposure to AgNPs caused both positive and negative effects on plant growth and germination.




References:
[1] B. Nowack, “Nanosilver revisited downstream”, Science, vol. 330, pp.
1054-1055, 2010.
[2] R. Kaegi, B. Sinnet, S. Zuleeg, H. Hagendorfer, E. Mueller, R. Vonbank,
et al., “Release of silver nanoparticles from outdoor facades’,
Environ. Pollut., vol. 158, no. 9, pp. 2900-2905, 2010.
[3] Y.S. El-Temsah, E.J. Joner, “Impact of Fe and Ag nanoparticles on seed
germination and differences in bioavailability during exposure in
aqueous suspension and soil”, Environ. Toxicol., vol. 27, pp. 42-49,
2012.
[4] R. Amooaghaiea, F. Tabatabaeia, A.-m. Ahadia, “Role of hematin and
sodium nitroprusside in regulating Brassica nigra seed germination
under nanosilver and silver nitrate stresses”, Ecotox. Environ. Safe., vol.
113, pp. 259-270, 2015.
[5] J. Yasur, P.U. Rani, “Environmental effects of nanosilver: impact on
castor seed germination, seedling growth, and plant physiology”,
Environ. Sci. Pollut. Res. Int., vol. 20, no. 12, pp. 8636-48, 2013.
[6] E.A. Abdel-Azeem, B.A. Elsayed, “Phytotoxicity of silver nanoparticles
on Vicia faba seedlings”, NY. Sci. J., vol. 6, no. 12, pp. 148-156, 2013.
[7] R. Barrena, E. Casals, J. Colon, X. Font, A. Sanchez, V. Puntes,
“Evaluation of the ecotoxicity of model nanoparticles”, Chemosphere,
vol. 75, pp. 850-857, 2009.
[8] P. Sharma, D. Bhatt, M.G. Zaidi, P.P. Saradhi, P.K. Khanna, S. Arora,
“Silver nanoparticle-mediated enhancement in growth and antioxidant
status of Brassica juncea”, Appl. Biochem. Biotechnol., vol. 167, pp.
2225-33, 2012.
[9] L. Yin, B.P. Colman, B.M. McGill, J.P. Wright, E.S. Bernhardt, “Effects
of silver nanoparticle exposure on germination and early growth of
eleven wetland plants”, PLoS One., vol. 7, no. 10, e47674, 2012.
[10] H.M.H. Salama, “Effects of silver nanoparticles in some crop plants,
common bean (Phaseolus vulgaris L.) and corn (Zea mays L.)”, Int. Res.
J. Biotech., vol. 3, pp. 190-197, 2012.
[11] N. Savithramma, S. Ankanna, G. Bhumi, “Effect of nanoparticles on
seed germination and seedling growth of Boswellia ovalifoliolata – an
endemic and endangered medicinal tree taxon”, Nano Vision, vol. 2, no.
(1, 2 &3), pp. 61-68, 2012.
[12] A. Parveen, S. Rao, “Effect of nanosilver on seed germination and
seedling growth in Pennisetum glaucum”, J. Clust. Sci., DOI
10.1007/s10876-014-0728-y, 2014.
[13] R. Kaveh, Y.S. Li, S. Ranjbar, R. Tehrani, C.L. Brueck, B. Van Aken,
“Changes in Arabidopsis thaliana gene expression in response to silver
nanoparticles and silver ions”, Environ. Sci. Technol., vol. 47, no. 18,
pp. 10637-44, 2013.
[14] J. Geisler-Lee, Q. Wang, Y. Yao, W. Zhang, M. Geisler, K. Li, et al.,
“Phytotoxicity, accumulation and transport of silver nanoparticles by
Arabidopsis thaliana”, Nanotoxicology, vol. 7, no. 3, pp. 323-337, 2013.
[15] H. Qian, X. Peng, X. Han, J. Ren, L. Sun, Z. Fu, “Comparison of the
toxicity of silver nanoparticles and silver ion on the growth of terrestrial
plant model Arabidopsis thaliana”, J. Environ. Sci., vol. 25, pp. 1947-
1955, 2013.
[16] C. Vannini, G. Domingo, E. Onelli, B. Prinsi, M. Marsoni, L. Espen, et
al., “Morphological and proteomic responses of Eruca sativa exposed to
silver nanoparticles or silver nitrate”, PLoS One., vol. 8, no. 7, e6875,
2013.
[17] A. Oukarroum, L. Barhoumi, L. Pirastru, D. Dewez, “Silver nanoparticle
toxicity effect on growth and cellular viability of the aquatic plant
Lemna gibba”, Environ. Toxicol. Chem., vol. 32, no. 4, pp. 902-7, 2013.
[18] D.K. Tiwari, N. Dasgupta-Schubert, L.M. Villasenǒr Cendejas, J.
Villegas, L, Carreto Montoya, S.E. Borjas García, “Interfacing carbon
nanotubes (CNT) with plants: enhancement of growth, water and ionic
nutrient uptake in maize (Zea mays) and implications for
nanoagriculture”, Appl. Nanosci., vol. 4, pp. 577-591, 2013.
[19] M.H. Siddiqui, M.H. Al-Whaibi, “Role of nano-SiO2 in germination of
tomato (Lycopersicum esculentum seeds Mill.)”, Saudi J. Bio. Sci., vol.
21, no. 1, pp. 13-17, 2014.
[20] E.H. Dehkourdi, M. Chehrazi, H. Hosseini, M. Hosseini, “The effect of
anatase nanoparticles (TiO2) on pepper seed germination (Capsicum
annum L.)”, Int. J. Biosci., vol. 4, no. 5, pp. 141-145, 2014.
[21] F. Yang, C. Liu, F.Q. Gao, M.Y. Su, X. Wu, L. Zheng, et al., “The
improvement of spinach growth by nano-anatase TiO2 treatment is
related to nitrogen photoreduction”, Biol. Trace Elem. Res., vol. 119,
no.1, pp. 77-88, 2007.
[22] R.Z. Baalbaki, R.A. Zurayk, S.N. Bleik, A. Talhuk “Germination and
seedling development of drought susceptible wheat under moisture
stress”, Seed Sci. Technol., vol. 17, pp. 291-302, 1990.
[23] L. Zheng, F. Hong, S. Lu, C. Liu, “Effect of nano-TiO2 on strength of
naturally aged seeds and growth of spinach”, Biolo. Trace. Element.
Res., vol. 104, no. 1, pp. 82-93, 2005.
[24] C.M. Lu, C.Y. Zhang, J.Q. Wen, G.R. Wu, M.X. Tao, “Research of the
effect of nanometer materials on germination and growth enhancement
of Glycine max and its mechanism”, Soybean Sci., vol. 21, pp. 168-172,
2002.
[25] Z. Lei, S. Mingyu, W. Xiao, L. Chao, Q. Chunxiang, C. Liang, et al.,
“Antioxidant stress is promoted by nano-anatase in spinach chloroplasts
under UV-B radiation”, Biol. Trace Elem. Res., vol. 121, pp. 69-79,
2008.
[26] D. Stampoulis, S.K. Sinha, J.C. White, “Assay-dependent phytotoxicity
of nanoparticles to plants”, Environ. Sci. Technol., vol. 43, pp. 9473,
2009.
[27] P. Chandana, K. Ehasanullah, M. Abhijeet, S. Meryam, G. Meetu,
“Silver nanoparticles and its effect on seed germination and physiology
in Brassica juncea L. (indian mustard) plant”, Adv. Sci. Lett., vol. 20, no.
7-9, pp. 1673-1676, 2014.
[28] E.J. Gubbins, L.C. Batty, J.R. Lead, “Phytotoxicity of silver
nanoparticles to Lemna minor L.”, Environ. Pollut., vol. 159, pp. 1551,
2011.
[29] P. Thuesombat, S. Hannongbua, S. Akasit b, S. Chadchawan, “Effect of
silver nanoparticles on rice (Oryza sativa L. cv. KDML 105) seed
germination and seedling growth”, Ecotox. Environ. Safe., vol. 104, pp.
302-309, 2014.
[30] U.S. Environmental Protection Agency (USEPA), “Ecological effects
test guidelines: Seed germination/root elongation toxicity test”, OPPTS
850, 4200, EPA 712-C-96-154, Washington DC, 1996.
[31] S. Kikui, T. Sasaki, M. Maekawa, A. Miyao, H. Hirochika, H.
Matsumoto, et al., “Physiological and genetic analyses of aluminum
tolerance in rice, focusing on root growth during germination”, J. Inorg.
Biochem., vol. 99, pp. 1837-1844, 2005.
[32] ISTA (International Seed Testing Association), “International rules for
seed testing”, Seed Sci. Technol., vol. 21, pp. 1-288, 1996.
[33] R.A. Ellis, E.H. Roberts, “The quantification of ageing and survival in
orthodox seeds”, Seed. Sci. Technol., vol. 9, pp. 373-409, 1981.
[34] A.D. Alvarado, K.J. Bradford, J.D. Hewitt, “Osmotic priming of tomato
seeds, effects on germination, field emergence, seedling growth and fruit
yield”, J. Am. Soc. Hortic. Sci., vol. 112, pp. 427-432, 1987.
[35] S. Ruan, Q. Xue, K. Tylkowska, “The influence of priming on
germination of rice Oryzo sativa L. seeds and seedling emergence and
performance in flooded soil”, Seed. Sci. Technol., vol. 30, pp. 61-67,
2002.