Simultaneously Reduction of NOx and Soot Emissions in a DI Heavy Duty diesel Engine Operating at High Cooled EGR Rates

One promising way to achieve low temperature combustion regime is the use of a large amount of cooled EGR. In this paper, the effect of injection timing on low temperature combustion process and emissions were investigated via three dimensional computational fluid dynamics (CFD) procedures in a DI diesel engine using high EGR rates. The results show when increasing EGR from low levels to levels corresponding to reduced temperature combustion, soot emission after first increasing, is decreased beyond 40% EGR and get the lowest value at 58% EGR rate. Soot and NOx emissions are simultaneously decreased at advanced injection timing before 20.5 ºCA BTDC in conjunction with 58% cooled EGR rate in compared to baseline case.

Re-Thinking Knowledge-Based Management

This paper challenges the relevance of knowledgebased management research by arguing that the majority of the literature emphasizes information and knowledge provision instead of their business usage. For this reason the related processes are considered valuable and eligible as such, which has led to overlapping nature of knowledge-based management disciplines. As a solution, this paper turns the focus on the information usage. Value of knowledge and respective management tasks are then defined by the business need and the knowledge-user becomes the main actor. The paper analyses the prevailing literature streams and recognizes the need for a more focused and robust understanding of knowledgebased value creation. The paper contributes by synthetizing the existing literature and pinpointing the essence of knowledge-based management disciplines.

Systematic Study of the p, d and 3He Elastic Scattering on 6Li

the elastic scattering of protons, deuterons and 3He on 6Li at different incident energies have been analyzed in the framework of the optical model using ECIS88 as well as SPI GENOA codes. The potential parameters were extracted in the phenomenological treatment of measured by us angular distributions and literature data. A good agreement between theoretical and experimental differential cross sections was obtained in whole angular range. Parameters for real part of potential have been also calculated microscopically with singleand double-folding model for the p and d, 3He scattering, respectively, using DFPOT code. For best agreement with experiment the normalization factor N for the potential depth is obtained in the range of 0.7-0.9.

An Images Monitoring System based on Multi-Format Streaming Grid Architecture

This paper proposes a novel multi-format stream grid architecture for real-time image monitoring system. The system, based on a three-tier architecture, includes stream receiving unit, stream processor unit, and presentation unit. It is a distributed computing and a loose coupling architecture. The benefit is the amount of required servers can be adjusted depending on the loading of the image monitoring system. The stream receive unit supports multi capture source devices and multi-format stream compress encoder. Stream processor unit includes three modules; they are stream clipping module, image processing module and image management module. Presentation unit can display image data on several different platforms. We verified the proposed grid architecture with an actual test of image monitoring. We used a fast image matching method with the adjustable parameters for different monitoring situations. Background subtraction method is also implemented in the system. Experimental results showed that the proposed architecture is robust, adaptive, and powerful in the image monitoring system.

Optimal Sizing of SSSC Controllers to Minimize Transmission Loss and a Novel Model of SSSC to Study Transient Response

In this paper, based on steady-state models of Flexible AC Transmission System (FACTS) devices, the sizing of static synchronous series compensator (SSSC) controllers in transmission network is formed as an optimization problem. The objective of this problem is to reduce the transmission losses in the network. The optimization problem is solved using particle swarm optimization (PSO) technique. The Newton-Raphson load flow algorithm is modified to consider the insertion of the SSSC devices in the network. A numerical example, illustrating the effectiveness of the proposed algorithm, is introduced. In addition, a novel model of a 3- phase voltage source converter (VSC) that is suitable for series connected FACTS a controller is introduced. The model is verified by simulation using Power System Blockset (PSB) and Simulink software.

Spray Combustion Dynamics under Thermoacoustic Oscillations

Thermoacoustic instabilities in combustors have remained a topic of investigation for over a few decades due to the challenges it posses to the operation of low emission gas turbines. For combustors burning liquid fuel, understanding the cause-andeffect relationship between spray combustion dynamics and thermoacoustic oscillations is imperative for the successful development of any control methodology for its mitigation. The paper presents some very unique operating characteristics of a kerosene-fueled diffusion type combustor undergoing limit-cycle oscillations. Combustor stability limits were mapped using three different-sized injectors. The results show that combustor instability depends on the characteristics of the fuel spray. A simple analytic analysis is also reported in support of a plausible explanation for the unique combustor behavior. The study indicates that high amplitude acoustic pressure in the combustor may cause secondary breakdown of fuel droplets resulting in premixed pre-vaporized type burning of the diffusion type combustor.

Process Optimization Regarding Geometrical Variation and Sensitivity Involving Dental Drill- and Implant-Guided Surgeries

Within dental-guided surgery, there has been a lack of analytical methods for optimizing the treatment of the rehabilitation concepts regarding geometrical variation. The purpose of this study is to find the source of the greatest geometrical variation contributor and sensitivity contributor with the help of virtual variation simulation of a dental drill- and implant-guided surgery process using a methodical approach. It is believed that lower geometrical variation will lead to better patient security and higher quality of dental drill- and implant-guided surgeries. It was found that the origin of the greatest contributor to the most variation, and hence where the foci should be set, in order to minimize geometrical variation was in the assembly category (surgery). This was also the category that was the most sensitive for geometrical variation.

Urban Roads of Bhopal City

Quality evaluation of urban environment is an integral part of efficient urban environment planning and management. The development of fuzzy set theory (FST) and the introduction of FST to the urban study field attempts to incorporate the gradual variation and avoid loss of information. Urban environmental quality assessment pertain to interpretation and forecast of the urban environmental quality according to the national regulation about the permitted content of contamination for the sake of protecting human health and subsistence environment . A strategic motor vehicle control strategy has to be proposed to mitigate the air pollution in the city. There is no well defined guideline for the assessment of urban air pollution and no systematic study has been reported so far for Indian cities. The methodology adopted may be useful in similar cities of India. Remote sensing & GIS can play significant role in mapping air pollution.

Effect of Vibration Intervention on Leg-press Exercise

Many studies have emphasized the importance of resistive exercise to maintain a healthy human body, particular in prevention of weakening of physical strength. Recently, some studies advocated that an application of vibration as a supplementary means in a regular training was effective in encouraging physical strength. Aim of the current study was, therefore, to identify if an application of vibration in a resistive exercise was effective in encouraging physical strength as that in a regular training. A 3-dimensional virtual lower extremity model for a healthy male and virtual leg-press model were generated and synchronized. Dynamic leg-press exercises on a slide machine with/without extra load and on a footboard with vibration as well as on a slide machine with extra load were analyzed. The results of the current indicated that the application of the vibration on the dynamic leg-press exercise might be not greatly effective in encouraging physical strength, compared with the dynamic leg press exercise with extra load. It was, however, thought that the application of the vibration might be helpful to elderly individuals because the reduced maximum muscle strength appeared by the effect of the vibration may avoid a muscular spasm, which can be driven from a high muscle strength sometimes produced during the leg-press exercise with extra load.

Identification of Flexographic-printed Newspapers with NIR Spectral Imaging

Near-infrared (NIR) spectroscopy is a widely used method for material identification for laboratory and industrial applications. While standard spectrometers only allow measurements at one sampling point at a time, NIR Spectral Imaging techniques can measure, in real-time, both the size and shape of an object as well as identify the material the object is made of. The online classification and sorting of recovered paper with NIR Spectral Imaging (SI) is used with success in the paper recycling industry throughout Europe. Recently, the globalisation of the recycling material streams caused that water-based flexographic-printed newspapers mainly from UK and Italy appear also in central Europe. These flexo-printed newspapers are not sufficiently de-inkable with the standard de-inking process originally developed for offset-printed paper. This de-inking process removes the ink from recovered paper and is the fundamental processing step to produce high-quality paper from recovered paper. Thus, the flexo-printed newspapers are a growing problem for the recycling industry as they reduce the quality of the produced paper if their amount exceeds a certain limit within the recovered paper material. This paper presents the results of a research project for the development of an automated entry inspection system for recovered paper that was jointly conducted by CTR AG (Austria) and PTS Papiertechnische Stiftung (Germany). Within the project an NIR SI prototype for the identification of flexo-printed newspaper has been developed. The prototype can identify and sort out flexoprinted newspapers in real-time and achieves a detection accuracy for flexo-printed newspaper of over 95%. NIR SI, the technology the prototype is based on, allows the development of inspection systems for incoming goods in a paper production facility as well as industrial sorting systems for recovered paper in the recycling industry in the near future.

Influence of Supplemental Glutamine on Nutrient Digestibility and Utilization, Small Intestinal Morphology and Gastrointestinal Tract and Immune Organ Developments of Broiler Chickens

This study was conducted to investigate the optimum levels of glutamine (Gln) supplementation in broiler diets. A total of 32 one-day-old male chicks with initial body weight 41.5 g were segregated into 4 groups (8 chicks per group) and subsequently distributed to individual cages. Feed and water were provided ad libitum for 21 days. Four dietary treatments were as follows: control and supplemented Gln at 1, 2 and 3%, respectively. The results found that the addition Gln had no negative effects on dry matter, organic matter, ash digestibility or nitrogen retention. Birds fed with 1% Gln had significantly higher villi wide and villi height : crypt depth ratio in duodenum than the control chicks and 2 and 3% Gln chicks. It is suggested that the addition of Gln at 1% indicated a beneficial effect on improving small intestinal morphology, in addition Gln may stimulate immune organ development of broiler chickens.

Overcoming Barriers to Open Innovation at Apple, Nintendo and Nokia

This is a conceptual paper on the application of open innovation in three case examples of Apple, Nintendo, and Nokia. Utilizing key concepts from research into managerial and organizational cognition, we describe how each company overcame barriers to utilizing open innovation strategy in R&D and commercialization projects. We identify three levels of barriers: cognitive, behavioral, and institutional, and describe the companies balanced between internal and external resources to launch products that were instrumental in companies reinventing themselves in mature markets.

Data Transmission Reliability in Short Message Integrated Distributed Monitoring Systems

Short message integrated distributed monitoring systems (SM-DMS) are growing rapidly in wireless communication applications in various areas, such as electromagnetic field (EMF) management, wastewater monitoring, and air pollution supervision, etc. However, delay in short messages often makes the data embedded in SM-DMS transmit unreliably. Moreover, there are few regulations dealing with this problem in SMS transmission protocols. In this study, based on the analysis of the command and data requirements in the SM-DMS, we developed a processing model for the control center to solve the delay problem in data transmission. Three components of the model: the data transmission protocol, the receiving buffer pool method, and the timer mechanism were described in detail. Discussions on adjusting the threshold parameter in the timer mechanism were presented for the adaptive performance during the runtime of the SM-DMS. This model optimized the data transmission reliability in SM-DMS, and provided a supplement to the data transmission reliability protocols at the application level.

Determining Cluster Boundaries Using Particle Swarm Optimization

Self-organizing map (SOM) is a well known data reduction technique used in data mining. Data visualization can reveal structure in data sets that is otherwise hard to detect from raw data alone. However, interpretation through visual inspection is prone to errors and can be very tedious. There are several techniques for the automatic detection of clusters of code vectors found by SOMs, but they generally do not take into account the distribution of code vectors; this may lead to unsatisfactory clustering and poor definition of cluster boundaries, particularly where the density of data points is low. In this paper, we propose the use of a generic particle swarm optimization (PSO) algorithm for finding cluster boundaries directly from the code vectors obtained from SOMs. The application of our method to unlabeled call data for a mobile phone operator demonstrates its feasibility. PSO algorithm utilizes U-matrix of SOMs to determine cluster boundaries; the results of this novel automatic method correspond well to boundary detection through visual inspection of code vectors and k-means algorithm.

Instructional Design Using the Virtual Ecological Pond for Science Education in Elementary Schools

Ecological ponds can be a good teaching tool for science teachers, but they must be built and maintained properly to provide students with a safe and suitable learning environment. Hence, many schools do not have the ability to build an ecological pond. This study used virtual reality technology to develop a webbased virtual ecological pond. Supported by situated learning theory and the instructional design of “Aquatic Life" learning unit, elementary school students can actively explore in the virtual ecological pond to observe aquatic animals and plants and learn about the concept of ecological conservation. A teaching experiment was conducted to investigate the learning effectiveness and practicability of this instructional design, and the results showed that students improved a great deal in learning about aquatic life. They found the virtual ecological pond interesting, easy to operate and helpful to understanding the aquatic ecological system. Therefore, it is useful in elementary science education.

Two-Phase Optimization for Selecting Materialized Views in a Data Warehouse

A data warehouse (DW) is a system which has value and role for decision-making by querying. Queries to DW are critical regarding to their complexity and length. They often access millions of tuples, and involve joins between relations and aggregations. Materialized views are able to provide the better performance for DW queries. However, these views have maintenance cost, so materialization of all views is not possible. An important challenge of DW environment is materialized view selection because we have to realize the trade-off between performance and view maintenance. Therefore, in this paper, we introduce a new approach aimed to solve this challenge based on Two-Phase Optimization (2PO), which is a combination of Simulated Annealing (SA) and Iterative Improvement (II), with the use of Multiple View Processing Plan (MVPP). Our experiments show that 2PO outperform the original algorithms in terms of query processing cost and view maintenance cost.

SDS-induced Serine Protease Activity of an Antiviral Red Fluorescent Protein

A rare phenomenon of SDS-induced activation of a latent protease activity associated with the purified silkworm excretory red fluorescent protein (SE-RFP) was noticed. SE-RFP aliquots incubated with SDS for different time intervals indicated that the protein undergoes an obligatory breakdown into a number of subunits which exhibit autoproteolytic (acting upon themselves) and/or heteroproteolytic (acting on other proteins) activities. A strong serine protease activity of SE-RFP subunits on Bombyx mori nucleopolyhedrovirus (BmNPV) polyhedral protein was detected by zymography technique. A complete inhibition of BmNPV infection to silkworms was observed by the oral administration assay of the SE-RFP. Here, it is proposed that the SE-RFP prevents the initial infection of BmNPV to silkworms by obliterating the polyhedral protein. This is the first report on a silkworm red fluorescent protein that exhibits a protease activity on exposure to SDS. The present studies would help in understanding the antiviral mechanism of silkworm red fluorescent proteins.

A Taxonomy of Internal Attacks in Wireless Sensor Network

Developments in communication technologies especially in wireless have enabled the progress of low-cost and lowpower wireless sensor networks (WSNs). The features of such WSN are holding minimal energy, weak computational capabilities, wireless communication and an open-medium nature where sensors are deployed. WSN is underpinned by application driven such as military applications, the health sector, etc. Due to the intrinsic nature of the network and application scenario, WSNs are vulnerable to many attacks externally and internally. In this paper we have focused on the types of internal attacks of WSNs based on OSI model and discussed some security requirements, characterizers and challenges of WSNs, by which to contribute to the WSN-s security research.

The Optimal Equilibrium Capacity of Information Hiding Based on Game Theory

Game theory could be used to analyze the conflicted issues in the field of information hiding. In this paper, 2-phase game can be used to build the embedder-attacker system to analyze the limits of hiding capacity of embedding algorithms: the embedder minimizes the expected damage and the attacker maximizes it. In the system, the embedder first consumes its resource to build embedded units (EU) and insert the secret information into EU. Then the attacker distributes its resource evenly to the attacked EU. The expected equilibrium damage, which is maximum damage in value from the point of view of the attacker and minimum from the embedder against the attacker, is evaluated by the case when the attacker attacks a subset from all the EU. Furthermore, the optimal equilibrium capacity of hiding information is calculated through the optimal number of EU with the embedded secret information. Finally, illustrative examples of the optimal equilibrium capacity are presented.

Design of High-speed Modified Booth Multipliers Operating at GHz Ranges

This paper describes the pipeline architecture of high-speed modified Booth multipliers. The proposed multiplier circuits are based on the modified Booth algorithm and the pipeline technique which are the most widely used to accelerate the multiplication speed. In order to implement the optimally pipelined multipliers, many kinds of experiments have been conducted. The speed of the multipliers is greatly improved by properly deciding the number of pipeline stages and the positions for the pipeline registers to be inserted. We described the proposed modified Booth multiplier circuits in Verilog HDL and synthesized the gate-level circuits using 0.13um standard cell library. The resultant multiplier circuits show better performance than others. Since the proposed multipliers operate at GHz ranges, they can be used in the systems requiring very high performance.