Design of Folded Cascode OTA in Different Regions of Operation through gm/ID Methodology

This paper presents an optimized methodology to folded cascode operational transconductance amplifier (OTA) design. The design is done in different regions of operation, weak inversion, strong inversion and moderate inversion using the gm/ID methodology in order to optimize MOS transistor sizing. Using 0.35μm CMOS process, the designed folded cascode OTA achieves a DC gain of 77.5dB and a unity-gain frequency of 430MHz in strong inversion mode. In moderate inversion mode, it has a 92dB DC gain and provides a gain bandwidth product of around 69MHz. The OTA circuit has a DC gain of 75.5dB and unity-gain frequency limited to 19.14MHZ in weak inversion region.

Vibration Damping of High-Chromium Ferromagnetic Steel

The aim of the present work is to study the effect of annealing on the vibration damping capacity of high-chromium (16%) ferromagnetic steel. The alloys were prepared from raw materials of 99.9% purity melted in a high frequency induction furnace under high vacuum. The samples were heat-treated in vacuum at various temperatures (800 to 1200ºC) for 1 hour followed by slow cooling (120ºC/h). The inverted torsional pendulum method was used to evaluate the vibration damping capacity. The results indicated that the vibration damping capacity of the alloys is influenced by annealing and there exists a critical annealing temperature after 1000ºC. The damping capacity increases quickly below the critical temperature since the magnetic domains move more easily.

On the Wave Propagation in Layered Plates of General Anisotropic Media

Analysis for the propagation of elastic waves in arbitrary anisotropic plates is investigated, commencing with a formal analysis of waves in a layered plate of an arbitrary anisotropic media, the dispersion relations of elastic waves are obtained by invoking continuity at the interface and boundary of conditions on the surfaces of layered plate. The obtained solutions can be used for material systems of higher symmetry such as monoclinic, orthotropic, transversely isotropic, cubic, and isotropic as it is contained implicitly in the analysis. The cases of free layered plate and layered half space are considered separately. Some special cases have also been deduced and discussed. Finally numerical solution of the frequency equations for an aluminum epoxy is carried out, and the dispersion curves for the few lower modes are presented. The results obtained theoretically have been verified numerically and illustrated graphically.

Colorectal Cancer Screening by a CEACAM-6 Immunosensor

The biomarker for colorectal cancer (CRC) is CEACAM-6 antigen (C6AG). Therefore, this study aims to develop a novel, simple and low-cost CEACAM-6 antigen immumosensor (C6AG-IMS), based on electrical impedance measurement, for precise determination of C6AG. A low-cost screen-printed graphite electrode was constructed and used as the sensor, with CEACAM-6 antibody (C6AB) immobilized on it. The procedures of sensor fabrication and antibody immobilization are simple and low-cost. Measurement of the electrical impedance at a definite frequency ranges (0.43 – 1.26 MHz) showed that the C6AG-IMS has an excellent linear (r2>0.9) response range (8.125 – 65 pg/mL), covering the normal physiological and pathological ranges of blood C6AG levels. Also, the C6AG-IMS has excellent reliability and validity, with the intraclass correlation coefficient being 0.97. In conclusion, a novel, simple, low-cost and reliable C6AG-IMS was designed and developed, being able to accurately determine blood C6AG levels in the range of pathological and normal physiological regions. The C6AG-IMS can provide a point-of-care and immediate screening results to the user at home.

Vortex Wake Formation and Its Effects on Thrust and Propulsive Efficiency of an Oscillating Airfoil

Flows over a harmonically oscillating NACA 0012 airfoil are simulated here using a two-dimensional, unsteady, incompressibleNavier-Stokes solver.Both pure-plunging and pitching-plunging combined oscillations are considered at a Reynolds number of 5000. Special attention is paid to the vortex shedding and interaction mechanism of the motions. For all the simulations presented here, the reduced frequency (k) is fixed at a value of 2.5 and plunging amplitude (h) is selected to be in the range of 0.2-0.5. The simulation results show that the interaction mechanism between the leading and trailing edge vortices has a decisive effect on the values of the resulting thrust and propulsive efficiency.

Development of a Simple laser-based 2D Compensating System for the Contouring Accuracy of Machine Tools

The dynamical contouring error is a critical element for the accuracy of machine tools. The contouring error is defined as the difference between the processing actual path and commanded path, which is implemented by following the command curves from feeding driving system in machine tools. The contouring error is resulted from various factors, such as the external loads, friction, inertia moment, feed rate, speed control, servo control, and etc. Thus, the study proposes a 2D compensating system for the contouring accuracy of machine tools. Optical method is adopted by using stable frequency laser diode and the high precision position sensor detector (PSD) to performno-contact measurement. Results show the related accuracy of position sensor detector (PSD) of 2D contouring accuracy compensating system was ±1.5 μm for a calculated range of ±3 mm, and improvement accuracy is over 80% at high-speed feed rate.

Improved Power Spectrum Estimation for RR-Interval Time Series

The RR interval series is non-stationary and unevenly spaced in time. For estimating its power spectral density (PSD) using traditional techniques like FFT, require resampling at uniform intervals. The researchers have used different interpolation techniques as resampling methods. All these resampling methods introduce the low pass filtering effect in the power spectrum. The lomb transform is a means of obtaining PSD estimates directly from irregularly sampled RR interval series, thus avoiding resampling. In this work, the superiority of Lomb transform method has been established over FFT based approach, after applying linear and cubicspline interpolation as resampling methods, in terms of reproduction of exact frequency locations as well as the relative magnitudes of each spectral component.

The Correlation between Peer Aggression and Peer Victimization: Are Aggressors Victims Too?

To investigate the possible correlation between peer aggression and peer victimization, 148 sixth-graders were asked to respond to the Reduced Aggression and Victimization Scales (RAVS). RAVS measures the frequency of reporting aggressive behaviors or of being victimized during the previous week prior to the survey. The scales are composed of six items each. Each point represents one instance of aggression or victimization. Specifically, the Pearson Product-Moment Correlation Coefficient (PMCC) was used to determine the correlations between the scores of the sixthgraders in the two scales, both in individual items and total scores. Positive correlations were established and correlations were significant at the 0.01 levels.

Organizational Commitment of Anadolu University Open Education Faculty Students

Distance education program is a dimension of contemporary and new education technologies. Concepts and applications in this field are the results of a series of educational demands and developments in various communication and education technologies. Distance education applications have some conceptual bases. These are creating new education opportunities, realizing work-education unity, getting democratic in education, lifelong education, tendency to individual matters, effective use of institutions, integration of technology and education, tendency to individual and social needs, taking three dimensional integration as the main principle (publishing, printed materials and face to face education), reaching maximum mass, individual and mass education integrity and education demand and financial matters balance. Economics, Business Administration and Open Education faculties, which have been giving education within Anadolu University since 1982 in Turkey, are carrying on education with nearly 1.000.000 students. The aim of this study is to determine organizational commitment levels of students who have been studying at Anadolu University Economics, Business Administration and Open Education faculties in the scope of affective, continuance and nominative commitment in Allen&Meyer model. In the study, organizational commitment of the Economics, Business Administration and Open Education faculty students, who are receiving education by means of distance education, to their faculties is dealt after introducing Anadolu University Distance Education system which gives higher education via distance education method in Turkey. In order to increase the success level of faculties it is required for students to have high level of organizational commitment to their faculties. A questionnaire has been applied by using “Organizational Commitment Scale", developed by Meyer&Allen to determine organizational commitments of Economics, Business Administration and Open Education students. Organizational commitment is dealt with as affective, continuance and nominative commitment. The questionnaire was applied face to face to randomly chosen 500 students living in Eskişehir and the data was downloaded to the computer by using SPSS program and the results were analyzed in terms of demographic features (gender, age, marital status, years of study, work and income level) of students by using frequency test, ttest and ANOVA test. As a result of these analyses, when the comments of Open Education Faculty students on levels of affective, continuance and nominative commitment to their faculties were examined, it has been revealed that continuance commitment level has the highest rate. Among the female participants; continuance commitment is high in the age range of 30-40, for normative commitment it is 17-22. However no dominant age range was defined for affective commitment. Regarding the marital status; continuance commitment average is higher among married participants; but nominative affective commitment average is higher among single participants. As to the years of study, affective and continuance commitment is higher among senior students while normative commitment is higher among junior students. Moreover; in terms of continuance, affective and normative commitment, those who do not work and have low income have higher level of all there commitment types than those who work and have relatively high income.

Comparison of S-transform and Wavelet Transform in Power Quality Analysis

In the power quality analysis non-stationary nature of voltage distortions require some precise and powerful analytical techniques. The time-frequency representation (TFR) provides a powerful method for identification of the non-stationary of the signals. This paper investigates a comparative study on two techniques for analysis and visualization of voltage distortions with time-varying amplitudes. The techniques include the Discrete Wavelet Transform (DWT), and the S-Transform. Several power quality problems are analyzed using both the discrete wavelet transform and S–transform, showing clearly the advantage of the S– transform in detecting, localizing, and classifying the power quality problems.

Digital Power Management Hardware Realization Using FPGA

This paper describes design of a digital feedback loop for a low switching frequency dc-dc switching converters. Low switching frequencies were selected in this design. A look up table for the digital PID (proportional integrator differentiator) compensator was implemented using Altera Stratix II with built-in ADC (analog-to-digital converter) to achieve this hardware realization. Design guidelines are given for the PID compensator, high frequency DPWM (digital pulse width modulator) and moving average filter.

Image Adaptive Watermarking with Visual Model in Orthogonal Polynomials based Transformation Domain

In this paper, an image adaptive, invisible digital watermarking algorithm with Orthogonal Polynomials based Transformation (OPT) is proposed, for copyright protection of digital images. The proposed algorithm utilizes a visual model to determine the watermarking strength necessary to invisibly embed the watermark in the mid frequency AC coefficients of the cover image, chosen with a secret key. The visual model is designed to generate a Just Noticeable Distortion mask (JND) by analyzing the low level image characteristics such as textures, edges and luminance of the cover image in the orthogonal polynomials based transformation domain. Since the secret key is required for both embedding and extraction of watermark, it is not possible for an unauthorized user to extract the embedded watermark. The proposed scheme is robust to common image processing distortions like filtering, JPEG compression and additive noise. Experimental results show that the quality of OPT domain watermarked images is better than its DCT counterpart.

Effect of Amplitude and Mean Angle of Attack on Wake of an Oscillating Airfoil

The unsteady wake of an EPPLER 361 airfoil in pitching motion has been investigated in a subsonic wind tunnel by hot-wire anemometry. The airfoil was given the pitching motion about the one-quarter chord axis at reduced frequency of 0182. Streamwise mean velocity profiles (wake profiles) were investigated at several vertically aligned points behind the airfoil at one-quarter chord downstream distance from trailing edge. Oscillation amplitude and mean angle of attack were varied to determine the effects on wake profiles. When the maximum dynamic angle of attack was below the static stall angle of attack, weak effects on wake were found by increasing oscillation amplitude and mean angle of attack. But, for higher angles of attack strong unsteady effects were appeared on the wake.

Surface and Guided Waves in Composites with Nematic Coatings

The theoretical prediction of the acoustical polarization effects in the heterogeneous composites, made of thick elastic solids with thin nematic films, is presented. The numericalanalytical solution to the problem of the different wave propagation exhibits some new physical effects in the low frequency domain: the appearance of the critical frequency and the existence of the narrow transition zone where the wave rapidly changes its speed. The associated wave attenuation is highly perturbed in this zone. We also show the possible appearance of the critical frequencies where the attenuation changes the sign. The numerical results of parametrical analysis are presented and discussed.

Texture Based Weed Detection Using Multi Resolution Combined Statistical and Spatial Frequency (MRCSF)

Texture classification is a trendy and a catchy technology in the field of texture analysis. Textures, the repeated patterns, have different frequency components along different orientations. Our work is based on Texture Classification and its applications. It finds its applications in various fields like Medical Image Classification, Computer Vision, Remote Sensing, Agricultural Field, and Textile Industry. Weed control has a major effect on agriculture. A large amount of herbicide has been used for controlling weeds in agriculture fields, lawns, golf courses, sport fields, etc. Random spraying of herbicides does not meet the exact requirement of the field. Certain areas in field have more weed patches than estimated. So, we need a visual system that can discriminate weeds from the field image which will reduce or even eliminate the amount of herbicide used. This would allow farmers to not use any herbicides or only apply them where they are needed. A machine vision precision automated weed control system could reduce the usage of chemicals in crop fields. In this paper, an intelligent system for automatic weeding strategy Multi Resolution Combined Statistical & spatial Frequency is used to discriminate the weeds from the crops and to classify them as narrow, little and broad weeds.

Performance Evaluation of a Neural Network based General Purpose Space Vector Modulator

Space Vector Modulation (SVM) is an optimum Pulse Width Modulation (PWM) technique for an inverter used in a variable frequency drive applications. It is computationally rigorous and hence limits the inverter switching frequency. Increase in switching frequency can be achieved using Neural Network (NN) based SVM, implemented on application specific chips. This paper proposes a neural network based SVM technique for a Voltage Source Inverter (VSI). The network proposed is independent of switching frequency. Different architectures are investigated keeping the total number of neurons constant. The performance of the inverter is compared for various switching frequencies for different architectures of NN based SVM. From the results obtained, the network with minimum resource and appropriate word length is identified. The bit precision required for this application is identified. The network with 8-bit precision is implemented in the IC XCV 400 and the results are presented. The performance of NN based general purpose SVM with higher bit precision is discussed.

Optimal Image Compression Based on Sign and Magnitude Coding of Wavelet Coefficients

Wavelet transforms is a very powerful tools for image compression. One of its advantage is the provision of both spatial and frequency localization of image energy. However, wavelet transform coefficients are defined by both a magnitude and sign. While algorithms exist for efficiently coding the magnitude of the transform coefficients, they are not efficient for the coding of their sign. It is generally assumed that there is no compression gain to be obtained from the coding of the sign. Only recently have some authors begun to investigate the sign of wavelet coefficients in image coding. Some authors have assumed that the sign information bit of wavelet coefficients may be encoded with the estimated probability of 0.5; the same assumption concerns the refinement information bit. In this paper, we propose a new method for Separate Sign Coding (SSC) of wavelet image coefficients. The sign and the magnitude of wavelet image coefficients are examined to obtain their online probabilities. We use the scalar quantization in which the information of the wavelet coefficient to belong to the lower or to the upper sub-interval in the uncertainly interval is also examined. We show that the sign information and the refinement information may be encoded by the probability of approximately 0.5 only after about five bit planes. Two maps are separately entropy encoded: the sign map and the magnitude map. The refinement information of the wavelet coefficient to belong to the lower or to the upper sub-interval in the uncertainly interval is also entropy encoded. An algorithm is developed and simulations are performed on three standard images in grey scale: Lena, Barbara and Cameraman. Five scales are performed using the biorthogonal wavelet transform 9/7 filter bank. The obtained results are compared to JPEG2000 standard in terms of peak signal to noise ration (PSNR) for the three images and in terms of subjective quality (visual quality). It is shown that the proposed method outperforms the JPEG2000. The proposed method is also compared to other codec in the literature. It is shown that the proposed method is very successful and shows its performance in term of PSNR.

Simulation Study for Performance Comparison of Routing Protocols in Mobile Adhoc Network

Due to insufficient frequency band and tremendous growth of the mobile users, complex computation is needed for the use of resources. Long distance communication began with the introduction of telegraphs and simple coded pulses, which were used to transmit short messages. Since then numerous advances have rendered reliable transfer of information both easier and quicker. Wireless network refers to any type of computer network that is wireless, and is commonly associated with a telecommunications network whose interconnections between nodes is implemented without the use of wires. Wireless network can be broadly categorized in infrastructure network and infrastructure less network. Infrastructure network is one in which we have a base station to serve the mobile users and in the infrastructure less network is one in which no infrastructure is available to serve the mobile users this kind of networks are also known as mobile Adhoc networks. In this paper we have simulated the result for different scenarios with protocols like AODV and DSR; we simulated the result for throughput, delay and receiving traffic in the given scenario.

Effects of Synthetic Jet in Suppressing Cavity Oscillations

The three-dimensional incompressible flow past a rectangular open cavity is investigated, where the aspect ratio of the cavity is considered as 4. The principle objective is to use large-eddy simulation to resolve and control the large-scale structures, which are largely responsible for flow oscillations in a cavity. The flow past an open cavity is very common in aerospace applications and can be a cause of acoustic source due to hydrodynamic instability of the shear layer and its interactions with the downstream edge. The unsteady Navier-stokes equations have been solved on a staggered mesh using a symmetry-preserving central difference scheme. Synthetic jet has been used as an active control to suppress the cavity oscillations in wake mode for a Reynolds number of ReD = 3360. The effect of synthetic jet has been studied by varying the jet amplitude and frequency, which is placed at the upstream wall of the cavity. The study indicates that there exits a frequency band, which is larger than a critical value, is effective in attenuating cavity oscillations when blowing ratio is more than 1.0.

Precision Control of Single-Phase PWM Inverter Using M68HC11E Microcontroller

Induction motors are being used in greater numbers throughout a wide variety of industrial and commercial applications because it provides many benefits and reliable device to convert the electrical energy into mechanical motion. In some application it-s desired to control the speed of the induction motor. Because of the physics of the induction motor the preferred method of controlling its speed is to vary the frequency of the AC voltage driving the motor. In recent years, with the microcontroller incorporated into an appliance it becomes possible to use it to generate the variable frequency AC voltage to control the speed of the induction motor. This study investigates the microcontroller based variable frequency power inverter. the microcontroller is provide the variable frequency pulse width modulation (PWM) signal that control the applied voltage on the gate drive, which is provides the required PWM frequency with less harmonics at the output of the power inverter. The fully controlled bridge voltage source inverter has been implemented with semiconductors power devices isolated gate bipolar transistor (IGBT), and the PWM technique has been employed in this inverter to supply the motor with AC voltage. The proposed drive system for three & single phase power inverter is simulated using Matlab/Simulink. The Matlab Simulation Results for the proposed system were achieved with different SPWM. From the result a stable variable frequency inverter over wide range has been obtained and a good agreement has been found between the simulation and hardware of a microcontroller based single phase inverter.