Improvement in Mechanical Behavior of Expulsion with Heat treated Thermite Welded Rail Steel

Thermite welding is mainly used in world. The reasons why the thermite welding method is widely used are that the equipment has good mobility and total working time of that is shorter than that of the enclosed arc welding method on site. Moreover, the operating skill, which required for thermite welding, is less than that of for enclosed arc welding. In the present research work, heat treatment and combined 'expulsion and heat treatment' techniques were used improve the mechanical properties and weldment structure. The specimens were cut in the transverse direction from expulsion with Heat treated and heat treated Thermite Welded rails. Specimens were prepared according to AWS standard and subjected to tensile test, Impact test and hardness and their results were tabulated. Microstructural analysis was carried out with the help of SEM. Then analyze to effect of heat treated and 'expulsion with heat treated' with the properties of their thermite welded rails. Compare the mechanical and microstructural properties of thermite welded rails between heat expulsion with heat treated and heat treated. Mechanical and microstructural response expulsion with heat treated thermite welded rail is higher value as compared to heat treatment.

Computer Study of Cluster Mechanism of Anti-greenhouse Effect

Absorption spectra of infra-red (IR) radiation of the disperse water medium absorbing the most important greenhouse gases: CO2 , N2O , CH4 , C2H2 , C2H6 have been calculated by the molecular dynamics method. Loss of the absorbing ability at the formation of clusters due to a reduction of the number of centers interacting with IR radiation, results in an anti-greenhouse effect. Absorption of O3 molecules by the (H2O)50 cluster is investigated at its interaction with Cl- ions. The splitting of ozone molecule on atoms near to cluster surface was observed. Interaction of water cluster with Cl- ions causes the increase of integrated intensity of emission spectra of IR radiation, and also essential reduction of the similar characteristic of Raman spectrum. Relative integrated intensity of absorption of IR radiation for small water clusters was designed. Dependences of the quantity of weight on altitude for vapor of monomers, clusters, droplets, crystals and mass of all moisture were determined. The anti-greenhouse effect of clusters was defined as the difference of increases of average global temperature of the Earth, caused by absorption of IR radiation by free water molecules forming clusters, and absorption of clusters themselves. The greenhouse effect caused by clusters makes 0.53 K, and the antigreenhouse one is equal to 1.14 K. The increase of concentration of CO2 in the atmosphere does not always correlate with the amplification of greenhouse effect.

Indicator of Small Calcification Detection in Ultrasonography using Decorrelation of Forward Scattered Waves

For the improvement of the ability in detecting small calcifications using Ultrasonography (US) we propose a novel indicator of calcifications in an ultrasound B-mode image without decrease in frame rate. Since the waveform of an ultrasound pulse changes at a calcification position, the decorrelation of adjacent scan lines occurs behind a calcification. Therefore, we employ the decorrelation of adjacent scan lines as an indicator of a calcification. The proposed indicator depicted wires 0.05 mm in diameter at 2 cm depth with a sensitivity of 86.7% and a specificity of 100%, which were hardly detected in ultrasound B-mode images. This study shows the potential of the proposed indicator to approximate the detectable calcification size using an US device to that of an X-ray imager, implying the possibility that an US device will become a convenient, safe, and principal clinical tool for the screening of breast cancer.

Investigation on Pore Water Pressure in Core of Karkheh Dam

Pore water pressure is normally because of consolidation, compaction and water level fluctuation on reservoir. Measuring, controlling and analyzing of pore water pressure have significant importance in both of construction and operation period. Since end of 2002, (dam start up) nature of KARKHEH dam has been analyzed by using the gathered information from instrumentation system of dam. In this lecture dam condition after start up have been analyzed by using the gathered data from located piezometers in core of dam. According to TERZAGHI equation and records of piezometers, consolidation lasted around five years during early years of construction stage, and current pore water pressure in core of dam is caused by water level fluctuation in reservoir. Although there is time lag between water level fluctuation and results of piezometers. These time lags have been checked and the results clearly show that one of the most important causes of it is distance between piezometer and reservoir.

Application of LSB Based Steganographic Technique for 8-bit Color Images

Steganography is the process of hiding one file inside another such that others can neither identify the meaning of the embedded object, nor even recognize its existence. Current trends favor using digital image files as the cover file to hide another digital file that contains the secret message or information. One of the most common methods of implementation is Least Significant Bit Insertion, in which the least significant bit of every byte is altered to form the bit-string representing the embedded file. Altering the LSB will only cause minor changes in color, and thus is usually not noticeable to the human eye. While this technique works well for 24-bit color image files, steganography has not been as successful when using an 8-bit color image file, due to limitations in color variations and the use of a colormap. This paper presents the results of research investigating the combination of image compression and steganography. The technique developed starts with a 24-bit color bitmap file, then compresses the file by organizing and optimizing an 8-bit colormap. After the process of compression, a text message is hidden in the final, compressed image. Results indicate that the final technique has potential of being useful in the steganographic world.

Shot Transition Detection with Minimal Decoding of MPEG Video Streams

Digital libraries become more and more necessary in order to support users with powerful and easy-to-use tools for searching, browsing and retrieving media information. The starting point for these tasks is the segmentation of video content into shots. To segment MPEG video streams into shots, a fully automatic procedure to detect both abrupt and gradual transitions (dissolve and fade-groups) with minimal decoding in real time is developed in this study. Each was explored through two phases: macro-block type's analysis in B-frames, and on-demand intensity information analysis. The experimental results show remarkable performance in detecting gradual transitions of some kinds of input data and comparable results of the rest of the examined video streams. Almost all abrupt transitions could be detected with very few false positive alarms.

Does Training in the Use of a Magnifier Improve Efficiency?

Provision of optical devices without proper instruction and training may cause frustration resulting in rejection or incorrect use of the magnifiers. However training in the use of magnifiers increases the cost of providing these devices. This study compared the efficacy of providing instruction alone and instruction plus training in the use of magnifiers. 24 participants randomly assigned to two groups. 15 received instruction and training and 9 received instruction only. Repeated measures of print size and reading speed were performed at pre, post training and follow up. Print size decreased in both groups between pre and post training maintained at follow up. Reading speed increased in both groups over time with the training group demonstrating more rapid improvement. Whilst overall outcomes were similar, training decreased the time required to increase reading speed supporting the use of training for increased efficiency. A cost effective form of training is suggested.

The Problems of Legal Regulation of Intellectual Property Rights in Innovation Activities in Russia (Institutional Approach)

Part IV of the Civil Code of the Russian Federation dedicated to legal regulation of Intellectual property rights came into force in 2008. It is a first attempt of codification in Intellectual property sphere in Russia. That is why a lot of new norms appeared. The main problem of the Russian Civil Code (part IV) is that many rules (norms of Law) contradict the norms of International Intellectual property Law (i.e. protection of inventions, creations, ideas, know-how, trade secrets, innovations). Intellectual property rights protect innovations and creations and reward innovative and creative activity. Intellectual property rights are international in character and in that respect they fit in rather well with the economic reality of the global economy. Inventors prefer not to take out a patent for inventions because it is a very difficult procedure, it takes a lot of time and is very expensive. That-s why they try to protect their inventions as ideas, know-how, confidential information. An idea is the main element of any object of Intellectual property (creation, invention, innovation, know-how, etc.). But ideas are not protected by Civil Code of Russian Federation. The aim of the paper is to reveal the main problems of legal regulation of Intellectual property in Russia and to suggest possible solutions. The authors of this paper have raised these essential issues through different activities. Through the panel survey, questionnaires which were spread among the participants of intellectual activities the main problems of implementation of innovations, protecting of the ideas and know-how were identified. The implementation of research results will help to solve economic and legal problems of innovations, transfer of innovations and intellectual property.1

Utilization of Laser-Ablation Based Analytical Methods for Obtaining Complete Chemical Information of Algae

Themain goal of this article is to find efficient methods for elemental and molecular analysis of living microorganisms (algae) under defined environmental conditions and cultivation processes. The overall knowledge of chemical composition is obtained utilizing laser-based techniques, Laser- Induced Breakdown Spectroscopy (LIBS) for acquiring information about elemental composition and Raman Spectroscopy for gaining molecular information, respectively. Algal cells were suspended in liquid media and characterized using their spectra. Results obtained employing LIBS and Raman Spectroscopy techniques will help to elucidate algae biology (nutrition dynamics depending on cultivation conditions) and to identify algal strains, which have the potential for applications in metal-ion absorption (bioremediation) and biofuel industry. Moreover, bioremediation can be readily combined with production of 3rd generation biofuels. In order to use algae for efficient fuel production, the optimal cultivation parameters have to be determinedleading to high production of oil in selected cellswithout significant inhibition of the photosynthetic activity and the culture growth rate, e.g. it is necessary to distinguish conditions for algal strain containing high amount of higher unsaturated fatty acids. Measurements employing LIBS and Raman Spectroscopy were utilized in order to give information about alga Trachydiscusminutus with emphasis on the amount of the lipid content inside the algal cell and the ability of algae to withdraw nutrients from its environment and bioremediation (elemental composition), respectively. This article can serve as the reference for further efforts in describing complete chemical composition of algal samples employing laserablation techniques.

Generation Scheduling Optimization of Multi-Hydroplants: A Case Study

A case study of the generation scheduling optimization of the multi-hydroplants on the Yuan River Basin in China is reported in this paper. Concerning the uncertainty of the inflows, the long/mid-term generation scheduling (LMTGS) problem is solved by a stochastic model in which the inflows are considered as stochastic variables. For the short-term generation scheduling (STGS) problem, a constraint violation priority is defined in case not all constraints are satisfied. Provided the stage-wise separable condition and low dimensions, the hydroplant-based operational region schedules (HBORS) problem is solved by dynamic programming (DP). The coordination of LMTGS and STGS is presented as well. The feasibility and the effectiveness of the models and solution methods are verified by the numerical results.

Study the Efficacies of Green Manure Application as Chickpea Pre Plant

In order to Study the efficacy application of green manure as chickpea pre plant, field experiments were carried out in 2007 and 2008 growing seasons. In this research the effects of different strategies for soil fertilization were investigated on grain yield and yield component, minerals, organic compounds and cooking time of chickpea. Experimental units were arranged in splitsplit plots based on randomized complete blocks with three replications. Main plots consisted of (G1): establishing a mixed vegetation of Vicia panunica and Hordeum vulgare and (G2): control, as green manure levels. Also, five strategies for obtaining the base fertilizer requirement including (N1): 20 t.ha-1 farmyard manure; (N2): 10 t.ha-1 compost; (N3): 75 kg.ha-1 triple super phosphate; (N4): 10 t.ha-1 farmyard manure + 5 t.ha-1 compost and (N5): 10 t.ha-1 farmyard manure + 5 t.ha-1 compost + 50 kg.ha-1 triple super phosphate were considered in sub plots. Furthermoree four levels of biofertilizers consisted of (B1): Bacillus lentus + Pseudomonas putida; (B2): Trichoderma harzianum; (B3): Bacillus lentus + Pseudomonas putida + Trichoderma harzianum; and (B4): control (without biofertilizers) were arranged in sub-sub plots. Results showed that integrating biofertilizers (B3) and green manure (G1) produced the highest grain yield. The highest amounts of yield were obtained in G1×N5 interaction. Comparison of all 2-way and 3-way interactions showed that G1N5B3 was determined as the superior treatment. Significant increasing of N, P2O5, K2O, Fe and Mg content in leaves and grains emphasized on superiority of mentioned treatment because each one of these nutrients has an approved role in chlorophyll synthesis and photosynthesis abilities of the crops. The combined application of compost, farmyard manure and chemical phosphorus (N5) in addition to having the highest yield, had the best grain quality due to high protein, starch and total sugar contents, low crude fiber and reduced cooking time.

Sensitivity Comparison between Rapid Immuno-Chromatographic Device Test and ELISA in Detection and Sero-Prevalence of HBsAg and Anti-HCV antibodies in Apparently Healthy Blood Donors of Lahore, Pakistan

Hepatitis B and hepatitis C are among the most significant hepatic infections all around the world that may lead to hepatocellular carcinoma. This study is first time performed at the blood transfussion centre of Omar hospital, Lahore. It aims to determine the sero-prevalence of these diseases by screening the apparently healthy blood donors who might be the carriers of HBV or HCV and pose a high risk in the transmission. It also aims the comparison between the sensitivity of two diagnostic tests; chromatographic immunoassay – one step test device and Enzyme Linked Immuno Sorbant Assay (ELISA). Blood serum of 855 apparently healthy blood donors was screened for Hepatitis B surface antigen (HBsAg) and for anti HCV antibodies. SPSS version 12.0 and X2 (Chi-square) test were used for statistical analysis. The seroprevalence of HCV was 8.07% by the device method and by ELISA 9.12% and that of HBV was 5.6% by the device and 6.43% by ELISA. The unavailability of vaccination against HCV makes it more prevalent. Comparing the two diagnostic methods, ELISA proved to be more sensitive.

Sensor Network Based Emergency Response and Navigation Support Architecture

In an emergency, combining Wireless Sensor Network's data with the knowledge gathered from various other information sources and navigation algorithms, could help safely guide people to a building exit while avoiding the risky areas. This paper presents an emergency response and navigation support architecture for data gathering, knowledge manipulation, and navigational support in an emergency situation. At normal state, the system monitors the environment. When an emergency event detects, the system sends messages to first responders and immediately identifies the risky areas from safe areas to establishing escape paths. The main functionalities of the system include, gathering data from a wireless sensor network which is deployed in a multi-story indoor environment, processing it with information available in a knowledge base, and sharing the decisions made, with first responders and people in the building. The proposed architecture will act to reduce risk of losing human lives by evacuating people much faster with least congestion in an emergency environment. 

A Framework for Urdu Language Translation using LESSA

Internet is one of the major sources of information for the person belonging to almost all the fields of life. Major language that is used to publish information on internet is language. This thing becomes a problem in a country like Pakistan, where Urdu is the national language. Only 10% of Pakistan mass can understand English. The reason is millions of people are deprived of precious information available on internet. This paper presents a system for translation from English to Urdu. A module LESSA is used that uses a rule based algorithm to read the input text in English language, understand it and translate it into Urdu language. The designed approach was further incorporated to translate the complete website from English language o Urdu language. An option appears in the browser to translate the webpage in a new window. The designed system will help the millions of users of internet to get benefit of the internet and approach the latest information and knowledge posted daily on internet.

The Impacts of Off-Campus Students on Local Neighbourhood in Malaysia

The impacts of near-campus student housing, or offcampus students accommodation cannot be ignored by the universities and as well as the community officials. Numerous scholarly studies, have highlighted the substantial economic impacts either; direct, indirect or induced, and cumulatively the roles of the universities have significantly contributed to the local economies. The issue of the impacts of off-campus student rental housing on neighbourhoods is one that has been of long-standing but increasing concern in Malaysia. Statistically, in Malaysia, there was approximately a total of 1.2 - 1.5 million students in 2009. By the year 2015, it is expected that 50 per cent of 18 to 30 year olds active population should gain access to university education, amounting to 120,000 yearly. The objectives of the research are to assess the impacts off-campus students on the local neighbourhood and specifically to obtain information on the living and learning conditions of off-campus students of Universiti Teknologi MARA Shah Alam, Malaysia. It is also to isolate those factors that may impede the successful learning so that priority can be given to them in subsequent policy implementations and actions by government and the higher education institutions.

Noninvasive Assessment of Low Power Laser Radiation Effect on Skin Wound Healing Using Infrared Thermography

The goal of this paper is to examine the effects of laser radiation on the skin wound healing using infrared thermography as non-invasive method for the monitoring of the skin temperature changes during laser treatment. Thirty Wistar rats were used in this study. A skin lesion was performed at the leg on all rats. The animals were exposed to laser radiation (λ = 670 nm, P = 15 mW, DP = 16.31 mW/cm2) for 600 s. Thermal images of wound were acquired before and after laser irradiation. The results have demonstrated that the tissue temperature decreases from 35.5±0.50°C in the first treatment day to 31.3±0.42°C after the third treatment day. This value is close to the normal value of the skin temperature and indicates the end of the skin repair process. In conclusion, the improvements in the wound healing following exposure to laser radiation have been revealed by infrared thermography.

Formation and Evaluation of Lahar/HDPE Hybrid Composite as a Structural Material for Household Biogas Digester

This study was an investigation on the suitability of Lahar/HDPE composite as a primary material for low-cost smallscale biogas digesters. While sources of raw materials for biogas are abundant in the Philippines, cost of the technology has made the widespread utilization of this resource an indefinite proposition. Aside from capital economics, another problem arises with space requirements of current digester designs. These problems may be simultaneously addressed by fabricating digesters on a smaller, household scale to reach a wider market, and to use materials that may accommodate optimization of overall design and fabrication cost without sacrificing operational efficiency. This study involved actual fabrication of the Lahar/HDPE composite at varying composition and geometry, subsequent mechanical and thermal characterization, and implementation of Statistical Analysis to find intrinsic relationships between variables. From the results, Lahar/HDPE composite was found to be feasible for use as digester material from both mechanical and economic standpoints. 

Traffic Signal Design and Simulation for Vulnerable Road Users Safety and Bus Preemption

Mostly, pedestrian-car accidents occurred at a signalized interaction is because pedestrians cannot across the intersection safely within the green light. From the viewpoint of pedestrian, there might have two reasons. The first one is pedestrians cannot speed up to across the intersection, such as the elders. The other reason is pedestrians do not sense that the signal phase is going to change and their right-of-way is going to lose. Developing signal logic to protect pedestrian, who is crossing an intersection is the first purpose of this study. Another purpose of this study is improving the reliability and reduce delay of public transportation service. Therefore, bus preemption is also considered in the designed signal logic. In this study, the traffic data of the intersection of Chong-Qing North Road and Min-Zu West Road, Taipei, Taiwan, is employed to calibrate and validate the signal logic by simulation. VISSIM 5.20, which is a microscopic traffic simulation software, is employed to simulate the signal logic. From the simulated results, the signal logic presented in this study can protect pedestrians crossing the intersection successfully. The design of bus preemption can reduce the average delay. However, the pedestrian safety and bus preemptive signal will influence the average delay of cars largely. Thus, whether applying the pedestrian safety and bus preemption signal logic to an isolated intersection or not should be evaluated carefully.

Heterogeneous Artifacts Construction for Software Evolution Control

The software evolution control requires a deep understanding of the changes and their impact on different system heterogeneous artifacts. And an understanding of descriptive knowledge of the developed software artifacts is a prerequisite condition for the success of the evolutionary process. The implementation of an evolutionary process is to make changes more or less important to many heterogeneous software artifacts such as source code, analysis and design models, unit testing, XML deployment descriptors, user guides, and others. These changes can be a source of degradation in functional, qualitative or behavioral terms of modified software. Hence the need for a unified approach for extraction and representation of different heterogeneous artifacts in order to ensure a unified and detailed description of heterogeneous software artifacts, exploitable by several software tools and allowing to responsible for the evolution of carry out the reasoning change concerned.

Study on the Effect of Volume Fraction of Dual Phase Steel to Corrosion Behaviour and Hardness

The objective of this project is to study the corrosion behaviour and hardness based on the presence of martensite in dual phase steel. This study was conducted on six samples of dual phase steel which have different percentage of martensite. A total of 9 specimens were prepared by intercritical annealing process to study the effect of temperature to the formation of martensite. The low carbon steels specimens were heated for 25 minutes in a specified temperature ranging from 7250C to 8250C followed by rapid cooling in water. The measurement of corrosion rate was done by using extrapolation tafel method, while potentiostat was used to control and measured the current produced. This measurement is performed through a system named CMS105. The result shows that a specimen with higher percentage of martensite is likely to corrode faster. Hardness test for each specimen was conducted to compare its hardness with low carbon steel. The results obtained indicate that the specimen hardness is proportional to the amount of martensite in dual phase steel.