Study on the Characteristics and Utilization of Sewage Sludge at Indah Water Konsortium (IWK) Sungai Udang, Melaka

The volume of biosolids produced in Malaysia nowadays had increased proportionally to its population size. The end products from the waste treatments were mounting, thus inevitable that in the end the environment will be surrounded by the waste. This study was conducted to investigate the suitability of biosolids to be reused as fertilizer for non-food crop. By varying the concentration of biosolids applied onto the soil, growth of five ornamental plant samples were tested for eight consecutive weeks. The results show that the pH of the soil after the addition of biosolids ranges from 6.45 to 6.56 which is suitable for the plant growth. The soil samples that contains biosolid also show higher amount of macronutrients (N, P, K) and the heavy metals content are significantly increased in the plant however it does not exceed the guidelines drawn by the Environmental Protection Agency. It is also proven that there was only small significant different in the performance of plant growth between biosolids and commercial fertilizer. It can be seen that biosolids was able to perform just as well as commercial fertilizer.

Study on Discharge Current Phenomena of Epoxy Resin Insulator Specimen

This paper presents the experimental results of discharge current phenomena on various humidity, temperature, pressure and pollutant conditions of epoxy resin specimen. The leakage distance of specimen was 3 cm, that it was supplied by high voltage. The polluted condition was given with NaCl artificial pollutant. The conducted measurements were discharge current and applied voltage. The specimen was put in a hermetically sealed chamber, and the current waveforms were analyzed with FFT. The result indicated that on discharge condition, the fifth harmonics still had dominant, rather than third one. The third harmonics tent to be appeared on low pressure heavily polluted condition, and followed by high humidity heavily polluted condition. On the heavily polluted specimen, the peaks discharge current points would be high and more frequent. Nevertheless, the specimen still had capacitive property. Besides that, usually discharge current points were more frequent. The influence of low pressure was still dominant to be easier to discharge. The non-linear property would be appear explicitly on low pressure and heavily polluted condition.

Early Supplier Involvement in New Product Development: A Casting-Network Collaboration Model

Early supplier involvement (ESI) benefits new product development projects several ways. Nevertheless, many castuser companies do not know the advantages of ESI and therefore do not utilize it. This paper presents reasons why to utilize ESI in casting industry and how that can be done. Further, this paper presents advantages and challenges related to ESI in casting industry, and introduces a Casting-Network Collaboration Model. The model presents practices for companies to build advantageous collaborative relationships. More detailed, the model describes three levels for company-network relationships in casting industry with different degrees of collaboration, and requirements for operating in each level. In our research, ESI was found to influence, for example, on project time, component cost, and quality. In addition, challenges related to ESI, such as, a lack of mutual trust and unawareness about the advantages were found. Our research approach was a case study including four cases.

Technical Trading Rules in Emerging Stock Markets

Literature reveals that many investors rely on technical trading rules when making investment decisions. If stock markets are efficient, one cannot achieve superior results by using these trading rules. However, if market inefficiencies are present, profitable opportunities may arise. The aim of this study is to investigate the effectiveness of technical trading rules in 34 emerging stock markets. The performance of the rules is evaluated by utilizing White-s Reality Check and the Superior Predictive Ability test of Hansen, along with an adjustment for transaction costs. These tests are able to evaluate whether the best model performs better than a buy-and-hold benchmark. Further, they provide an answer to data snooping problems, which is essential to obtain unbiased outcomes. Based on our results we conclude that technical trading rules are not able to outperform a naïve buy-and-hold benchmark on a consistent basis. However, we do find significant trading rule profits in 4 of the 34 investigated markets. We also present evidence that technical analysis is more profitable in crisis situations. Nevertheless, this result is relatively weak.

Rapid Urbanization and the Challenge of SustainableUrban Development in Palestinian Cities

Palestinian cities face the challenges of land scarcity, high population growth rates, rapid urbanization, uneven development and territorial fragmentation. Due to geopolitical constrains and the absence of an effective Palestinian planning institution, urban development in Palestinian cities has not followed any discernable planning scheme. This has led to a number of internal contradictions in the structure of cities, and adversely affected land use, the provision of urban services, and the quality of the living environment. This paper explores these challenges, and the potential that exists for introducing a more sustainable urban development pattern in Palestinian cities. It assesses alternative development approaches with a particular focus on sustainable development, promoting ecodevelopment imperatives, limiting random urbanization, and meeting present and future challenges, including fulfilling the needs of the people and conserving the scarce land and limited natural resources. This paper concludes by offering conceptual proposals and guidelines for promoting sustainable physical development in Palestinian cities.

Wireless Sensor Networks for Swiftlet Farms Monitoring

This paper provides an in-depth study of Wireless Sensor Network (WSN) application to monitor and control the swiftlet habitat. A set of system design is designed and developed that includes the hardware design of the nodes, Graphical User Interface (GUI) software, sensor network, and interconnectivity for remote data access and management. System architecture is proposed to address the requirements for habitat monitoring. Such applicationdriven design provides and identify important areas of further work in data sampling, communications and networking. For this monitoring system, a sensor node (MTS400), IRIS and Micaz radio transceivers, and a USB interfaced gateway base station of Crossbow (Xbow) Technology WSN are employed. The GUI of this monitoring system is written using a Laboratory Virtual Instrumentation Engineering Workbench (LabVIEW) along with Xbow Technology drivers provided by National Instrument. As a result, this monitoring system is capable of collecting data and presents it in both tables and waveform charts for further analysis. This system is also able to send notification message by email provided Internet connectivity is available whenever changes on habitat at remote sites (swiftlet farms) occur. Other functions that have been implemented in this system are the database system for record and management purposes; remote access through the internet using LogMeIn software. Finally, this research draws a conclusion that a WSN for monitoring swiftlet habitat can be effectively used to monitor and manage swiftlet farming industry in Sarawak.

Evaluation of Stiffness and Damping Coefficients of Multiple Axial Groove Water Lubricated Bearing Using Computational Fluid Dynamics

This research details a Computational Fluid Dynamics (CFD) approach to model fluid flow in a journal bearing with 8 equispaced semi-circular axial grooves. Water is used as the lubricant and is fed from one end of the bearing to the other, under pressure. The geometry of the bearing is modeled using a commercially available modeling software GAMBIT and the flow analysis is performed using a dedicated CFD analysis software FLUENT. The pressure distribution in the bearing clearance is obtained from FLUENT for various whirl ratios and is used to calculate the hydrodynamic force components in the radial and tangential direction of the bearing. These values along with the various whirl speeds can be used to do a regression analysis to determine the stiffness and damping coefficients. The values obtained are then compared with the stiffness and damping coefficients of a 3 Axial groove water lubricated journal bearing and those obtained from a FORTRAN code for a similar bearing.

A Delay-Tolerant Distributed Query Processing Architecture for Mobile Environment

The intermittent connectivity modifies the “always on" network assumption made by all the distributed query processing systems. In modern- day systems, the absence of network connectivity is considered as a fault. Since the last upload, it might not be feasible to transmit all the data accumulated right away over the available connection. It is possible that vital information may be delayed excessively when the less important information takes place of the vital information. Owing to the restricted and uneven bandwidth, it is vital that the mobile nodes make the most advantageous use of the connectivity when it arrives. Hence, in order to select the data that needs to be transmitted first, some sort of data prioritization is essential. A continuous query processing system for intermittently connected mobile networks that comprises of a delaytolerant continuous query processor distributed across the mobile hosts has been proposed in this paper. In addition, a mechanism for prioritizing query results has been designed that guarantees enhanced accuracy and reduced delay. It is illustrated that our architecture reduces the client power consumption, increases query efficiency by the extensive simulation results.

The Reliability of the Improved e-N Method for Transition Prediction as Checked by PSE Method

Transition prediction of boundary layers has always been an important problem in fluid mechanics both theoretically and practically, yet notwithstanding the great effort made by many investigators, there is no satisfactory answer to this problem. The most popular method available is so-called e-N method which is heavily dependent on experiments and experience. The author has proposed improvements to the e-N method, so to reduce its dependence on experiments and experience to a certain extent. One of the key assumptions is that transition would occur whenever the velocity amplitude of disturbance reaches 1-2% of the free stream velocity. However, the reliability of this assumption needs to be verified. In this paper, transition prediction on a flat plate is investigated by using both the improved e-N method and the parabolized stability equations (PSE) methods. The results show that the transition locations predicted by both methods agree reasonably well with each other, under the above assumption. For the supersonic case, the critical velocity amplitude in the improved e-N method should be taken as 0.013, whereas in the subsonic case, it should be 0.018, both are within the range 1-2%.

Applications of Artificial Neural Network to Building Statistical Models for Qualifying and Indexing Radiation Treatment Plans

The main goal in this paper is to quantify the quality of different techniques for radiation treatment plans, a back-propagation artificial neural network (ANN) combined with biomedicine theory was used to model thirteen dosimetric parameters and to calculate two dosimetric indices. The correlations between dosimetric indices and quality of life were extracted as the features and used in the ANN model to make decisions in the clinic. The simulation results show that a trained multilayer back-propagation neural network model can help a doctor accept or reject a plan efficiently. In addition, the models are flexible and whenever a new treatment technique enters the market, the feature variables simply need to be imported and the model re-trained for it to be ready for use.

Outer-Brace Stress Concentration Factors of Offshore Two-Planar Tubular DKT-Joints

In the present paper, a set of parametric FE stress analyses is carried out for two-planar welded tubular DKT-joints under two different axial load cases. Analysis results are used to present general remarks on the effect of geometrical parameters on the stress concentration factors (SCFs) at the inner saddle, outer saddle, toe, and heel positions on the main (outer) brace. Then a new set of SCF parametric equations is developed through nonlinear regression analysis for the fatigue design of two-planar DKT-joints. An assessment study of these equations is conducted against the experimental data; and the satisfaction of the criteria regarding the acceptance of parametric equations is checked. Significant effort has been devoted by researchers to the study of SCFs in various uniplanar tubular connections. Nevertheless, for multi-planar joints covering the majority of practical applications, very few investigations have been reported due to the complexity and high cost involved.

Automatically Generated and Marked E-Learning Exercises for Logistics Cost Accounting

This paper presents the concept and realisation of an e-learning tool that provides predefined or automatically generated exercises concerning logistics cost accounting. Students may practise where and whenever they like to via the Internet. Their solutions are marked automatically by the tool while considering consecutive faults and without any intervention of lecturers.

Effect of Uneven Surface on Magnetic Properties of Fe-Based Amorphous Transformer

This study reports the preparation of soft magnetic ribbons of Fe-based amorphous alloys using the single-roller melt-spinning technique. Ribbon width varied from 142 mm to 213 mm and, with a thickness of approximately 22 μm 2 μm. The microstructure and magnetic properties of the ribbons were characterized by differential scanning calorimeter (DSC), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), and electrical resistivity measurements (ERM). The amorphous material properties dependence of the cooling rate and nozzle pressure have uneven surface in ribbon thicknesses are investigated. Magnetic measurement results indicate that some region of the ribbon exhibits good magnetic properties, higher saturation induction and lower coercivity. However, due to the uneven surface of 213 mm wide ribbon, the magnetic responses are not uniformly distributed. To understand the transformer magnetic performances, this study analyzes the measurements of a three-phase 2 MVA amorphous-cored transformer. Experimental results confirm that the transformer with a ribbon width of 142 mm has better magnetic properties in terms of lower core loss, exciting power, and audible noise. 

Herpes Simplex Virus Type I Infection of Mice Testis and Effect on Fertility

The objective of current issue was to develop a model of testicular herpes simplex virus (HSV) type I infection for assessment of viral effect on fertility. 56 male mice were inoculated intraperitoneally with different concentrations of HSV on 8 day post partum. It was revealed that the optimal dose was 100 plaque forming units per mice as it provided testicular infection in 100% of survivors. HSV proteins were detected both in somatic and germ cells (spermatogonia, spermatocytes, spermatides). Although DNA load in testis was descending from 3 to 28 days post infection only 12.5% of infected males had offspring after mating with uninfected females comparing to 87.5% in control (p=0.012). These results are the first direct evidence for HSV impact in male sterility. Prepuberal mice appeared to be a suitable model for investigation of pathogenesis of virus-associated fertility disorders.

Synthesis and Electrochemical Characterization of Iron Oxide / Activated Carbon Composite Electrode for Symmetrical Supercapacitor

In the present work, we have developed a symmetric electrochemical capacitor based on the nanostructured iron oxide (Fe3O4)-activated carbon (AC) nanocomposite materials. The physical properties of the nanocomposites were characterized by Scanning Electron Microscopy (SEM) and Brunauer-Emmett-Teller (BET) analysis. The electrochemical performances of the composite electrode in 1.0 M Na2SO3 and 1.0 M Na2SO4 aqueous solutions were evaluated using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The composite electrode with 4 wt% of iron oxide nanomaterials exhibits the highest capacitance of 86 F/g. The experimental results clearly indicate that the incorporation of iron oxide nanomaterials at low concentration to the composite can improve the capacitive performance, mainly attributed to the contribution of the pseudocapacitance charge storage mechanism and the enhancement on the effective surface area of the electrode. Nevertheless, there is an optimum threshold on the amount of iron oxide that needs to be incorporated into the composite system. When this optimum threshold is exceeded, the capacitive performance of the electrode starts to deteriorate, as a result of the undesired particle aggregation, which is clearly indicated in the SEM analysis. The electrochemical performance of the composite electrode is found to be superior when Na2SO3 is used as the electrolyte, if compared to the Na2SO4 solution. It is believed that Fe3O4 nanoparticles can provide favourable surface adsorption sites for sulphite (SO3 2-) anions which act as catalysts for subsequent redox and intercalation reactions.

3D Dense Correspondence for 3D Dense Morphable Face Shape Model

Realistic 3D face model is desired in various applications such as face recognition, games, avatars, animations, and etc. Construction of 3D face model is composed of 1) building a face shape model and 2) rendering the face shape model. Thus, building a realistic 3D face shape model is an essential step for realistic 3D face model. Recently, 3D morphable model is successfully introduced to deal with the various human face shapes. 3D dense correspondence problem should be precedently resolved for constructing a realistic 3D dense morphable face shape model. Several approaches to 3D dense correspondence problem in 3D face modeling have been proposed previously, and among them optical flow based algorithms and TPS (Thin Plate Spline) based algorithms are representative. Optical flow based algorithms require texture information of faces, which is sensitive to variation of illumination. In TPS based algorithms proposed so far, TPS process is performed on the 2D projection representation in cylindrical coordinates of the 3D face data, not directly on the 3D face data and thus errors due to distortion in data during 2D TPS process may be inevitable. In this paper, we propose a new 3D dense correspondence algorithm for 3D dense morphable face shape modeling. The proposed algorithm does not need texture information and applies TPS directly on 3D face data. Through construction procedures, it is observed that the proposed algorithm constructs realistic 3D face morphable model reliably and fast.

Mass Casualty Acute Pepper Spray Inhalation Respiratory Effect Severity

Pepper spray use has gained momentum since 1992 and although the active ingredient is readily available, it is considered a weapon with restricted use in many regions, including The Bahamas. In light of controversy in the literature regarding the severity of presenting respiration complaints among individuals postacute exposure of pepper spray inhalation, this descriptive case series study was conducted to assess the respiratory status of persons evaluated during a mass casualty in The Bahamas. Parameters noted were patients- demographics and respiration severity determined via clinical examination findings, disposition and follow-up review of the 20 persons. Their most common complaint was difficulty breathing post exposure. Two required admission and stayed for

Informal Education and Developing Entrepreneurial Skills among Farmers in Malaysia

The Malaysian government is promoting entrepreneurship development skills amongst farmers through informal courses. These courses will concentrate on teaching managerial skills as inevitable means for small farms to succeed by making farmers more creative and innovative. Therefore it is important to assess the effect of informal agri-entrepreneurial training in developing entrepreneurship among the farmers in Malaysia. Seven hundred and ninety six farmers (796) farmers were interviewed via structured questionnaire to define their opinion on whether the current informal educational and training establishments are sufficient to teach and develop entrepreneurial skills. Factor analysis and logic regression analysis were used to determine the motivating factors and predict their impact on the development of entrepreneurial skills. The result from the factor analysis led us to investigate the association between these factors and farmers- opinions about the development of entrepreneurial skills and traits through participating in informal entrepreneurship training or education. The outcome has shown us that the importance of informal training to promote entrepreneurship among farmers is crucial. The training should be intensified to encourage farmers to not only focus on the modern technologies but also on the fundamental changes in their attitude towards agriculture as a business. DOA: KMO: Kaiser- Meyer- Olkin Test MOA: Ministry of Agriculture NMP: Ninth Malaysia Plan NAP: Third National Agricultural Policy (2000-2010)

Design of QFT-Based Self-Tuning Deadbeat Controller

This paper presents a design method of self-tuning Quantitative Feedback Theory (QFT) by using improved deadbeat control algorithm. QFT is a technique to achieve robust control with pre-defined specifications whereas deadbeat is an algorithm that could bring the output to steady state with minimum step size. Nevertheless, usually there are large peaks in the deadbeat response. By integrating QFT specifications into deadbeat algorithm, the large peaks could be tolerated. On the other hand, emerging QFT with adaptive element will produce a robust controller with wider coverage of uncertainty. By combining QFT-based deadbeat algorithm and adaptive element, superior controller that is called selftuning QFT-based deadbeat controller could be achieved. The output response that is fast, robust and adaptive is expected. Using a grain dryer plant model as a pilot case-study, the performance of the proposed method has been evaluated and analyzed. Grain drying process is very complex with highly nonlinear behaviour, long delay, affected by environmental changes and affected by disturbances. Performance comparisons have been performed between the proposed self-tuning QFT-based deadbeat, standard QFT and standard dead-beat controllers. The efficiency of the self-tuning QFTbased dead-beat controller has been proven from the tests results in terms of controller’s parameters are updated online, less percentage of overshoot and settling time especially when there are variations in the plant.

Investigating Cultural, Artistic and Architectural Consequences of Mongolian Invasion of Iran and Establishment of Ilkhanate Dynasty

Social, culture and artistic status of a society in various historical eras is affected by numerous, and sometimes imposed, factors that better understanding requires analysis of such conditions. Throughout history Iran has been involved with determining and significant events that examining each of these events can improve the understanding of social conditions of this country in the intended time. Mongolian conquest of Iran is one of most significant events in the history of Iran with consequences that never left Iranian societies. During this tragic invasion and subsequent devastating wars, which led to establishment of Ilkhanate dynasty, numerous cultural and artistic changes occurred both in Mongolian conquerors and Iranian society. This study examines these changes with a glimpse towards art and architecture as important part of cultural aspects and social communication.