Methods for Data Selection in Medical Databases: The Binary Logistic Regression -Relations with the Calculated Risks

The medical studies often require different methods for parameters selection, as a second step of processing, after the database-s designing and filling with information. One common task is the selection of fields that act as risk factors using wellknown methods, in order to find the most relevant risk factors and to establish a possible hierarchy between them. Different methods are available in this purpose, one of the most known being the binary logistic regression. We will present the mathematical principles of this method and a practical example of using it in the analysis of the influence of 10 different psychiatric diagnostics over 4 different types of offences (in a database made from 289 psychiatric patients involved in different types of offences). Finally, we will make some observations about the relation between the risk factors hierarchy established through binary logistic regression and the individual risks, as well as the results of Chi-squared test. We will show that the hierarchy built using the binary logistic regression doesn-t agree with the direct order of risk factors, even if it was naturally to assume this hypothesis as being always true.

A Design-Based Cohesion Metric for Object-Oriented Classes

Class cohesion is an important object-oriented software quality attribute. It indicates how much the members in a class are related. Assessing the class cohesion and improving the class quality accordingly during the object-oriented design phase allows for cheaper management of the later phases. In this paper, the notion of distance between pairs of methods and pairs of attribute types in a class is introduced and used as a basis for introducing a novel class cohesion metric. The metric considers the methodmethod, attribute-attribute, and attribute-method direct interactions. It is shown that the metric gives more sensitive values than other well-known design-based class cohesion metrics.

Simulation of a Process Design Model for Anaerobic Digestion of Municipal Solid Wastes

Anaerobic Digestion has become a promising technology for biological transformation of organic fraction of the municipal solid wastes (MSW). In order to represent the kinetic behavior of such biological process and thereby to design a reactor system, development of a mathematical model is essential. Addressing this issue, a simplistic mathematical model has been developed for anaerobic digestion of MSW in a continuous flow reactor unit under homogeneous steady state condition. Upon simulated hydrolysis, the kinetics of biomass growth and substrate utilization rate are assumed to follow first order reaction kinetics. Simulation of this model has been conducted by studying sensitivity of various process variables. The model was simulated using typical kinetic data of anaerobic digestion MSW and typical MSW characteristics of Kolkata. The hydraulic retention time (HRT) and solid retention time (SRT) time were mainly estimated by varying different model parameters like efficiency of reactor, influent substrate concentration and biomass concentration. Consequently, design table and charts have also been prepared for ready use in the actual plant operation.

Modeling and Simulation of Switched Reluctance Motor with Three-Phase and Four- Phase Configurations

The reluctance motor is an electric motor in which torque is produced by the tendency of its moveable part to move to a position where the inductance of the excited winding is maximized. In this paper switched reluctance motors (SRMs) with two different configurations(3-phase SRM with 4rotor poles and 6 stator poles, 4- phase SRM with 6rotor poles and 8 stator poles) is designed by RMxprt, and performance of them is analyzed. Efficiency and torque of SRM for different configurations in full-load condition have been presented. The results indicate that with correct choosing of motor applications, maximum efficiency can be found.

2D Bar Codes Reading: Solutions for Camera Phones

Two-dimensional (2D) bar codes were designed to carry significantly more data with higher information density and robustness than its 1D counterpart. Thanks to the popular combination of cameras and mobile phones, it will naturally bring great commercial value to use the camera phone for 2D bar code reading. This paper addresses the problem of specific 2D bar code design for mobile phones and introduces a low-level encoding method of matrix codes. At the same time, we propose an efficient scheme for 2D bar codes decoding, of which the effort is put on solutions of the difficulties introduced by low image quality that is very common in bar code images taken by a phone camera.

Prevalence of Psychological Resistance to Voluntary Counselling and Testing of HIV/AIDS among Students of Tertiary Institutions in Kano State, Nigeria

The incessant discomfort for Voluntary Counselling and Testing (VCT) exhibited by students in some tertiary institutions in Kano State, Nigeria is capable of causing Psychological Resistance as well as jeopardizing the purpose of HIV intervention. This study investigated the Prevalence of Psychological Resistance to VCT of HIV/AIDS among students of tertiary institutions in the state. Two null hypotheses were postulated and tested. Cross- Sectional Survey Design was employed in which 1512 sample was selected from a student population of 104,841 following Stratified Random Sampling technique. A self-developed 20-item scale whose reliability coefficient is 0.83 was used for data collection. Data analyzed via Chi-square and t-test reveals a prevalence of 38% with males (Mean=0.34; SD=0.475) constituting 60% and females (Mean=0.45; SD=0.498) 40%. Also, the calculated chi-square and ttest were not significant at 0.05 as such the null hypotheses were upheld. Recommendation offered suggests the use of reinforcement and social support for students who patronize HIV/AIDS counselling.

Portfolio Simulation in GSM Cellular Telecommunication Industry for Company's Decision and Policies Making

The rising growth of the GSM cellular phone industry has tightening competition level between providers in making strategies enhancing the market shares in Indonesia. Tsel, as one of those companies, has to determine the proper strategy to sustain as well as improve the market share without reducing its operational income level. Portfolio simulation model is designed with a dynamic system approach. The result of this research is a recommendation to the company by optimizing its technological policies, services, and promotions. The tariff policies and the signal quality should not be the main focus because this company has had a large number of customers and a good infrastructural condition.

Method for Concept Labeling Based on Mapping between Ontology and Thesaurus

When designing information systems that deal with large amount of domain knowledge, system designers need to consider ambiguities of labeling termsin domain vocabulary for navigating users in the information space. The goal of this study is to develop a methodology for system designers to label navigation items, taking account of ambiguities stems from synonyms or polysemes of labeling terms. In this paper, we propose a method for concept labeling based on mappings between domain ontology andthesaurus, and report results of an empirical evaluation.

Accurate Crosstalk Analysis for RLC On-Chip VLSI Interconnect

This work proposes an accurate crosstalk noise estimation method in the presence of multiple RLC lines for the use in design automation tools. This method correctly models the loading effects of non switching aggressors and aggressor tree branches using resistive shielding effect and realistic exponential input waveforms. Noise peak and width expressions have been derived. The results obtained are at good agreement with SPICE results. Results show that average error for noise peak is 4.7% and for the width is 6.15% while allowing a very fast analysis.

An Enhance of the Energy Effectiveness of the Convectors Used for Heating or Cooling

The objective of this paper is to present a research study of the convectors that are used for heating or cooling of the living room or industrial halls. The key points are experimental measurement and comprehensive numerical simulation of the flow coming throughout the part of the convector such as heat exchanger, input from the fan etc.. From the obtained results, the components of the convector are optimized in sense to increase thermal power efficiency due to improvement of heat convection or reduction of air drag friction. Both optimized aspects are leading to the more effective service conditions and to energy saving. The significant part of the convector research is a design of the unique measurement laboratory and adopting measure techniques. The new laboratory provides possibility to measure thermal power efficiency and other relevant parameters under specific service conditions of the convectors.

Mathematical Simulation of Bubble Column Slurry Reactor for Direct Dimethyl Ether Synthesis Process from Syngas

Based on a global kinetics of direct dimethyl ether (DME) synthesis process from syngas, a steady-state one-dimensional mathematical model for the bubble column slurry reactor (BCSR) has been established. It was built on the assumption of plug flow of gas phase, sedimentation-dispersion model of catalyst grains and isothermal chamber regardless of reaction heats and rates for the design of an industrial scale bubble column slurry reactor. The simulation results indicate that higher pressure and lower temperature were favorable to the increase of CO conversion, DME selectivity, products yield and the height of slurry bed, which has a coincidence with the characteristic of DME synthesis reaction system, and that the height of slurry bed is lessen with the increasing of operation temperature in the range of 220-260℃. CO conversion, the optimal operation conditions in BCSR were proposed. 

A Cell-centered Diffusion Finite Volume Scheme and it's Application to Magnetic Flux Compression Generators

A cell-centered finite volume scheme for discretizing diffusion operators on distorted quadrilateral meshes has recently been designed and added to APMFCG to enable that code to be used as a tool for studying explosive magnetic flux compression generators. This paper describes this scheme. Comparisons with analytic results for 2-D test cases are presented, as well as 2-D results from a test of a "realistic" generator configuration.

Research on the Layout of Ground Control Points in Plain area 1:10000 DLG Production Using POS Technique

POS (also been called DGPS/IMU) technique can obtain the Exterior Orientation Elements of aerial photo, so the triangulation and DLG production using POS can save large numbers of ground control points (GCP), and this will improve the produce efficiency of DLG and reduce the cost of collecting GCP. This paper mainly research on POS technique in production of 1:10 000 scale DLG on GCP distribution. We designed 23 kinds of ground control points distribution schemes, using integrated sensor direction method to do the triangulation experiments, based on the results of triangulation, we produce a map with the scale of 1:10 000 and test its accuracy. This paper put forward appropriate GCP distributing schemes by experiments and research above, and made preparations for the application of POS technique on photogrammetry 4D data production.

Energy Efficiency: An Engineering Pathway towards Sustainability

Today global warming, climate change and energy supply are of greater concern as it is widely realized that the planet earth does not provide an infinite capacity for absorbing human industrialization in the 21st century. The aim of this paper is to analyze upstream and downstream electricity production in selected case studies: a coal power plant, a pump system and a microwave oven covering and consumption to explore the position of energy efficiency in engineering sustainability. Collectively, the analysis presents energy efficiency as a major pathway towards sustainability that requires an inclusive and a holistic supply chain response in the engineering design process.

Representing Shared Join Points with State Charts: A High Level Design Approach

Aspect Oriented Programming promises many advantages at programming level by incorporating the cross cutting concerns into separate units, called aspects. Join Points are distinguishing features of Aspect Oriented Programming as they define the points where core requirements and crosscutting concerns are (inter)connected. Currently, there is a problem of multiple aspects- composition at the same join point, which introduces the issues like ordering and controlling of these superimposed aspects. Dynamic strategies are required to handle these issues as early as possible. State chart is an effective modeling tool to capture dynamic behavior at high level design. This paper provides methodology to formulate the strategies for multiple aspect composition at high level, which helps to better implement these strategies at coding level. It also highlights the need of designing shared join point at high level, by providing the solutions of these issues using state chart diagrams in UML 2.0. High level design representation of shared join points also helps to implement the designed strategy in systematic way.

A Discretizing Method for Reliability Computation in Complex Stress-strength Models

This paper proposes, implements and evaluates an original discretization method for continuous random variables, in order to estimate the reliability of systems for which stress and strength are defined as complex functions, and whose reliability is not derivable through analytic techniques. This method is compared to other two discretizing approaches appeared in literature, also through a comparative study involving four engineering applications. The results show that the proposal is very efficient in terms of closeness of the estimates to the true (simulated) reliability. In the study we analyzed both a normal and a non-normal distribution for the random variables: this method is theoretically suitable for each parametric family.

Advantages of Composite Materials in Aircraft Structures

In the competitive environment of aircraft industries it becomes absolutely necessary to improve the efficiency, performance of the aircrafts to reduce the development and operating costs considerably, in order to capitalize the market. An important contribution to improve the efficiency and performance can be achieved by decreasing the aircraft weight through considerable usage of composite materials in primary aircraft structures. In this study, a type of composite material called Carbon Fiber Reinforced Plastic (CFRP) is explored for the usage is aircraft skin panels. Even though there were plenty of studies and research has been already carried out, here a practical example of an aircraft skin panel is taken and substantiated the benefits of composites material usage over the metallic skin panel. A crown skin panel of a commercial aircraft is designed using both metal and composite materials. Stress analysis has been carried out for both and margin of safety is estimated for the critical load cases. The skin panels are compared for manufacturing, tooling, assembly and cost parameters. Detail step by step comparison between metal and composite constructions are studied and results are tabulated for better understanding.

Design of Angular Estimator of Inertial Sensor Using the Least Square Method

Since MEMS gyro sensors measure not angle of rotation but angular rate, an estimator is designed to estimate the angles in many applications. Gyro and accelerometer are used to improve estimating accuracy of the angle. This paper presents a method of finding filter coefficients of the well-known estimator which is to get rotation angles from gyro and accelerometer data. In order to verify the performance of our method, the estimated angle is compared with the encoder output in a rotary pendulum system.

Comparison of Current Chinese and Japanese Design Specification for Bridge Pile in Liquefied Ground

Firstly, this study briefly presents the current situation that there exists a vast gap between current Chinese and Japanese seismic design specification for bridge pile foundation in liquefiable and liquefaction-induced lateral spreading ground; The Chinese and Japanese seismic design method and technical detail for bridge pile foundation in liquefying and lateral spreading ground are described and compared systematically and comprehensively, the methods of determining coefficient of subgrade reaction and its reduction factor as well as the computing mode of the applied force on pile foundation due to liquefaction-induced lateral spreading soil in Japanese design specification are especially introduced. Subsequently, the comparison indicates that the content of Chinese seismic design specification for bridge pile foundation in liquefiable and liquefaction-induced lateral spreading ground, just presenting some qualitative items, is too general and lacks systematicness and maneuverability. Finally, some defects of seismic design specification in China are summarized, so the improvement and revision of specification in the field turns out to be imperative for China, some key problems of current Chinese specifications are generalized and the corresponding improvement suggestions are proposed.

PID Controller Design for Following Control of Hard Disk Drive by Characteristic Ratio Assignment Method

The author present PID controller design for following control of hard disk drive by characteristic ratio assignment method. The study in this paper concerns design of a PID controller which sufficiently robust to the disturbances and plant perturbations on following control of hard disk drive. Characteristic Ratio Assignment (CRA) is shown to be an efficient control technique to serve this requirement. The controller design by CRA is based on the choice of the coefficients of the characteristic polynomial of the closed loop system according to the convenient performance criteria such as equivalent time constant and ration of characteristic coefficient. Hence, in this study, CRA method is applied in PID controller design for following control of hard disk drive. Matlab simulation results shown that CRA design is fairly stable and robust whilst giving the convenience in controller-s parameters adjustment.