On the Performance of Information Criteria in Latent Segment Models

Nevertheless the widespread application of finite mixture models in segmentation, finite mixture model selection is still an important issue. In fact, the selection of an adequate number of segments is a key issue in deriving latent segments structures and it is desirable that the selection criteria used for this end are effective. In order to select among several information criteria, which may support the selection of the correct number of segments we conduct a simulation study. In particular, this study is intended to determine which information criteria are more appropriate for mixture model selection when considering data sets with only categorical segmentation base variables. The generation of mixtures of multinomial data supports the proposed analysis. As a result, we establish a relationship between the level of measurement of segmentation variables and some (eleven) information criteria-s performance. The criterion AIC3 shows better performance (it indicates the correct number of the simulated segments- structure more often) when referring to mixtures of multinomial segmentation base variables.

Distributed Detection and Optimal Traffic-blocking of Network Worms

Despite the recent surge of research in control of worm propagation, currently, there is no effective defense system against such cyber attacks. We first design a distributed detection architecture called Detection via Distributed Blackholes (DDBH). Our novel detection mechanism could be implemented via virtual honeypots or honeynets. Simulation results show that a worm can be detected with virtual honeypots on only 3% of the nodes. Moreover, the worm is detected when less than 1.5% of the nodes are infected. We then develop two control strategies: (1) optimal dynamic trafficblocking, for which we determine the condition that guarantees minimum number of removed nodes when the worm is contained and (2) predictive dynamic traffic-blocking–a realistic deployment of the optimal strategy on scale-free graphs. The predictive dynamic traffic-blocking, coupled with the DDBH, ensures that more than 40% of the network is unaffected by the propagation at the time when the worm is contained.

Simulation of 3D Flow using Numerical Model at Open-channel Confluences

This paper analytically investigates the 3D flow pattern at the confluences of two rectangular channels having 900 angles using Navier-Stokes equations based on Reynolds Stress Turbulence Model (RSM). The equations are solved by the Finite- Volume Method (FVM) and the flow is analyzed in terms of steadystate (single-phased) conditions. The Shumate experimental findings were used to test the validity of data. Comparison of the simulation model with the experimental ones indicated a close proximity between the flow patterns of the two sets. Effects of the discharge ratio on separation zone dimensions created in the main-channel downstream of the confluence indicated an inverse relation, where a decrease in discharge ratio, will entail an increase in the length and width of the separation zone. The study also found the model as a powerful analytical tool in the feasibility study of hydraulic engineering projects.

Construction of Recombinant E.coli Expressing Fusion Protein to Produce 1,3-Propanediol

In this study, a synthetic pathway was created by assembling genes from Clostridium butyricum and Escherichia coli in different combinations. Among the genes were dhaB1 and dhaB2 from C. butyricum VPI1718 coding for glycerol dehydratase (GDHt) and its activator (GDHtAc), respectively, involved in the conversion of glycerol to 3-hydroxypropionaldehyde (3-HPA). The yqhD gene from E.coli BL21 was also included which codes for an NADPHdependent 1,3-propanediol oxidoreductase isoenzyme (PDORI) reducing 3-HPA to 1,3-propanediol (1,3-PD). Molecular modeling analysis indicated that the conformation of fusion protein of YQHD and DHAB1 was favorable for direct molecular channeling of the intermediate 3-HPA. According to the simulation results, the yqhD and dhaB1 gene were assembled in the upstream of dhaB2 to express a fusion protein, yielding the recombinant strain E. coliBL21 (DE3)//pET22b+::yqhD-dhaB1_dhaB2 (strain BP41Y3). Strain BP41Y3 gave 10-fold higher 1,3-PD concentration than E. coliBL21 (DE3)//pET22b+::yqhD-dhaB1_dhaB2 (strain BP31Y2) expressing the recombinant enzymes simultaneously but in a non-fusion mode. This is the first report using a gene fusion approach to enhance the biological conversion of glycerol to the value added compound 1,3- PD.

The Effect of Harmonic Power Fluctuation for Estimating Flicker

Voltage flicker problems have long existed in several of the distribution areas served by the Taiwan Power Company. In the past, those research results indicating that the estimated ΔV10 value based on the conventional method is significantly smaller than the survey value. This paper is used to study the relationship between the voltage flicker problems and harmonic power variation for the power system with electric arc furnaces. This investigation discussed thought the effect of harmonic power fluctuation with flicker estimate value. The method of field measurement, statistics and simulation is used. The survey results demonstrate that 10 ΔV estimate must account for the effect of harmonic power variation.

Evaluating Performance of Quality-of-Service Routing in Large Networks

The performance and complexity of QoS routing depends on the complex interaction between a large set of parameters. This paper investigated the scaling properties of source-directed link-state routing in large core networks. The simulation results show that the routing algorithm, network topology, and link cost function each have a significant impact on the probability of successfully routing new connections. The experiments confirm and extend the findings of other studies, and also lend new insight designing efficient quality-of-service routing policies in large networks.

A New True RMS-to-DC Converter in CMOS Technology

This paper presents a new true RMS-to-DC converter circuit based on a square-root-domain squarer/divider. The circuit is designed by employing up-down translinear loop and using of MOSFET transistors that operate in strong inversion saturation region. The converter offer advantages of two-quadrant input current, low circuit complexity, low supply voltage (1.2V) and immunity from the body effect. The circuit has been simulated by HSPICE. The simulation results are seen to conform to the theoretical analysis and shows benefits of the proposed circuit.

Numerical Simulation of the Transient Shape Variation of a Rotating Liquid Droplet

Transient shape variation of a rotating liquid dropletis simulated numerically. The three dimensional Navier-Stokes equations were solved by using the level set method. The shape variation from the sphere to the rotating ellipsoid, and to the two-robed shapeare simulated, and the elongation of the two-robed droplet is discussed. The two-robed shape after the initial transient is found to be stable and the elongation is almost the same for the cases with different initial rotation rate. The relationship between the elongation and the rotation rate is obtained by averaging the transient shape variation. It is shown that the elongation of two-robed shape is in good agreement with the existing experimental data. It is found that the transient numerical simulation is necessary for analyzing the largely elongated two-robed shape of rotating droplet.

Prediction of Tool and Nozzle Flow Behavior in Ultrasonic Machining Process

The use of hard and brittle material has become increasingly more extensive in recent years. Therefore processing of these materials for the parts fabrication has become a challenging problem. However, it is time-consuming to machine the hard brittle materials with the traditional metal-cutting technique that uses abrasive wheels. In addition, the tool would suffer excessive wear as well. However, if ultrasonic energy is applied to the machining process and coupled with the use of hard abrasive grits, hard and brittle materials can be effectively machined. Ultrasonic machining process is mostly used for the brittle materials. The present research work has developed models using finite element approach to predict the mechanical stresses sand strains produced in the tool during ultrasonic machining process. Also the flow behavior of abrasive slurry coming out of the nozzle has been studied for simulation using ANSYS CFX module. The different abrasives of different grit sizes have been used for the experimentation work.

The Effect of Mixture Velocity and Droplet Diameter on Oil-water Separator using Computational Fluid Dynamics (CFD)

The characteristics of fluid flow and phase separation in an oil-water separator were numerically analysed as part of the work presented herein. Simulations were performed for different velocities and droplet diameters, and the way this parameters can influence the separator geometry was studied. The simulations were carried out using the software package Fluent 6.2, which is designed for numerical simulation of fluid flow and mass transfer. The model consisted of a cylindrical horizontal separator. A tetrahedral mesh was employed in the computational domain. The condition of two-phase flow was simulated with the two-fluid model, taking into consideration turbulence effects using the k-ε model. The results showed that there is a strong dependency of phase separation on mixture velocity and droplet diameter. An increase in mixture velocity will bring about a slow down in phase separation and as a consequence will require a weir of greater height. An increase in droplet diameter will produce a better phase separation. The simulations are in agreement with results reported in literature and show that CFD can be a useful tool in studying a horizontal oilwater separator.

Thermal Carpet Cloaking Achieved by Layered Metamaterial

We have devised a thermal carpet cloak theoretically and implemented in silicon using layered metamaterial. The layered metamaterial is composed of single crystalline silicon and its phononic crystal. The design is based on a coordinate transformation. We demonstrate the result with numerical simulation. Great cloaking performance is achieved as a thermal insulator is well hidden under the thermal carpet cloak. We also show that the thermal carpet cloak can even the temperature on irregular surface. Using thermal carpet cloak to manipulate the heat conduction is effective because of its low complexity.

Vortex Wake Formation and Its Effects on Thrust and Propulsive Efficiency of an Oscillating Airfoil

Flows over a harmonically oscillating NACA 0012 airfoil are simulated here using a two-dimensional, unsteady, incompressibleNavier-Stokes solver.Both pure-plunging and pitching-plunging combined oscillations are considered at a Reynolds number of 5000. Special attention is paid to the vortex shedding and interaction mechanism of the motions. For all the simulations presented here, the reduced frequency (k) is fixed at a value of 2.5 and plunging amplitude (h) is selected to be in the range of 0.2-0.5. The simulation results show that the interaction mechanism between the leading and trailing edge vortices has a decisive effect on the values of the resulting thrust and propulsive efficiency.

Efficient Detection Using Sequential Probability Ratio Test in Mobile Cognitive Radio Systems

This paper proposes a smart design strategy for a sequential detector to reliably detect the primary user-s signal, especially in fast fading environments. We study the computation of the log-likelihood ratio for coping with a fast changing received signal and noise sample variances, which are considered random variables. First, we analyze the detectability of the conventional generalized log-likelihood ratio (GLLR) scheme when considering fast changing statistics of unknown parameters caused by fast fading effects. Secondly, we propose an efficient sensing algorithm for performing the sequential probability ratio test in a robust and efficient manner when the channel statistics are unknown. Finally, the proposed scheme is compared to the conventional method with simulation results with respect to the average number of samples required to reach a detection decision.

Motion Protection System Design for a Parallel Motion Platform

A motion protection system is designed for a parallel motion platform with subsided cabin. Due to its complex structure, parallel mechanism is easy to encounter interference problems including link length limits, joints limits and self-collision. Thus a virtual spring algorithm in operational space is developed for the motion protection system to avoid potential damages caused by interference. Simulation results show that the proposed motion protection system can effectively eliminate interference problems and ensure safety of the whole motion platform.

Reliability Analysis of Underground Pipelines Using Subset Simulation

An advanced Monte Carlo simulation method, called Subset Simulation (SS) for the time-dependent reliability prediction for underground pipelines has been presented in this paper. The SS can provide better resolution for low failure probability level with efficient investigating of rare failure events which are commonly encountered in pipeline engineering applications. In SS method, random samples leading to progressive failure are generated efficiently and used for computing probabilistic performance by statistical variables. SS gains its efficiency as small probability event as a product of a sequence of intermediate events with larger conditional probabilities. The efficiency of SS has been demonstrated by numerical studies and attention in this work is devoted to scrutinise the robustness of the SS application in pipe reliability assessment. It is hoped that the development work can promote the use of SS tools for uncertainty propagation in the decision-making process of underground pipelines network reliability prediction.

IVE: Virtual Humans’ AI Prototyping Toolkit

IVE toolkit has been created for facilitating research,education and development in the field of virtual storytelling and computer games. Primarily, the toolkit is intended for modelling action selection mechanisms of virtual humans, investigating level-of-detail AI techniques for large virtual environments, and for exploring joint behaviour and role-passing technique (Sec. V). Additionally, the toolkit can be used as an AI middleware without any changes. The main facility of IVE is that it serves for prototyping both the AI and virtual worlds themselves. The purpose of this paper is to describe IVE's features in general and to present our current work - including an educational game - on this platform.

Experiments and Modeling of Ion Exchange Resins for Nuclear Power Plants

Resins are used in nuclear power plants for water ultrapurification. Two approaches are considered in this work: column experiments and simulations. A software called OPTIPUR was developed, tested and used. The approach simulates the onedimensional reactive transport in porous medium with convectivedispersive transport between particles and diffusive transport within the boundary layer around the particles. The transfer limitation in the boundary layer is characterized by the mass transfer coefficient (MTC). The influences on MTC were measured experimentally. The variation of the inlet concentration does not influence the MTC; on the contrary of the Darcy velocity which influences. This is consistent with results obtained using the correlation of Dwivedi&Upadhyay. With the MTC, knowing the number of exchange site and the relative affinity, OPTIPUR can simulate the column outlet concentration versus time. Then, the duration of use of resins can be predicted in conditions of a binary exchange.

CFD Simulation the Thermal-Hydraulic Characteristic within Fuel Rod Bundle near Grid Spacers

This paper looks into detailed investigation of thermal-hydraulic characteristics of the flow field in a fuel rod model, especially near the spacer. The area investigate represents a source of information on the velocity flow field, vortex, and on the amount of heat transfer into the coolant all of which are critical for the design and improvement of the fuel rod in nuclear power plants. The flow field investigation uses three-dimensional Computational Fluid Dynamics (CFD) with the Reynolds stresses turbulence model (RSM). The fuel rod model incorporates a vertical annular channel where three different shapes of spacers are used; each spacer shape is addressed individually. These spacers are mutually compared in consideration of heat transfer capabilities between the coolant and the fuel rod model. The results are complemented with the calculated heat transfer coefficient in the location of the spacer and along the stainless-steel pipe.

Effects of Photovoltaic System Introduction in Detached Houses with All-Electrified Residential Equipment in Japan

In this paper, in order to investigate the effects of photovoltaic system introduction to detached houses in Japan, two kinds of works were done. Firstly, the hourly generation amount of a 4.2kW photovoltaic system were simulated in 46 cities to investigate the potential of the system in different regions in Japan using a simulation model of photovoltaic system. Secondly, based on the simulated electricity generation amount, the energy saving, the environmental and the economic effect of the photovoltaic system were examined from hourly to annual timescales, based upon calculations of typical electricity, heating, cooling and hot water supply load profiles for Japanese dwellings. The above analysis was carried out using a standard year-s hourly weather data for the different city provided by the Expanded AMeDAS Weather Data issued by AIJ (Architectural Institute of Japan).