Development of NOx Emission Model for a Tangentially Fired Acid Incinerator

This paper aims to develop a NOx emission model of an acid gas incinerator using Nelder-Mead least squares support vector regression (LS-SVR). Malaysia DOE is actively imposing the Clean Air Regulation to mandate the installation of analytical instrumentation known as Continuous Emission Monitoring System (CEMS) to report emission level online to DOE . As a hardware based analyzer, CEMS is expensive, maintenance intensive and often unreliable. Therefore, software predictive technique is often preferred and considered as a feasible alternative to replace the CEMS for regulatory compliance. The LS-SVR model is built based on the emissions from an acid gas incinerator that operates in a LNG Complex. Simulated Annealing (SA) is first used to determine the initial hyperparameters which are then further optimized based on the performance of the model using Nelder-Mead simplex algorithm. The LS-SVR model is shown to outperform a benchmark model based on backpropagation neural networks (BPNN) in both training and testing data.

Analysis of the Islands Tourists, Destination Information Sources and Service Satisfaction

The purpose of this study is to analyze the islands tourist travel information sources, as well as for the satisfaction of the tourist destination services. This study used questionnaires to the island of Taiwan to the Penghu Islands to engage in tourism activities tourist adopt the designated convenience sampling method, a total of 889 valid questionnaires were collected. After statistical analysis, this study found that: 1. tourists to the Penghu Islands travel information source for “friends and family came to Penghu". 2. Tourists feel the service of the outlying islands of Penghu, the highest feelings of “friendly local residents". 3. There are different demographic variables affect the tourist travel information source and service satisfaction. Based on the findings of this study not only for Penghu's tourism industry with the unit in charge of the proposed operating and suggestions for future research to other researchers.

Low Complexity Multi Mode Interleaver Core for WiMAX with Support for Convolutional Interleaving

A hardware efficient, multi mode, re-configurable architecture of interleaver/de-interleaver for multiple standards, like DVB, WiMAX and WLAN is presented. The interleavers consume a large part of silicon area when implemented by using conventional methods as they use memories to store permutation patterns. In addition, different types of interleavers in different standards cannot share the hardware due to different construction methodologies. The novelty of the work presented in this paper is threefold: 1) Mapping of vital types of interleavers including convolutional interleaver onto a single architecture with flexibility to change interleaver size; 2) Hardware complexity for channel interleaving in WiMAX is reduced by using 2-D realization of the interleaver functions; and 3) Silicon cost overheads reduced by avoiding the use of small memories. The proposed architecture consumes 0.18mm2 silicon area for 0.12μm process and can operate at a frequency of 140 MHz. The reduced complexity helps in minimizing the memory utilization, and at the same time provides strong support to on-the-fly computation of permutation patterns.

The Heat and Mass Transfer Phenomena in Vacuum Membrane Distillation for Desalination

Vacuum membrane distillation (VMD) process can be used for water purification or the desalination of salt water. The process simply consists of a flat sheet hydrophobic micro porous PTFE membrane and diaphragm vacuum pump without a condenser for the water recovery or trap. The feed was used aqueous NaCl solution. The VMD experiments were performed to evaluate the heat and mass transfer coefficient of the boundary layer in a membrane module. The only operating parameters are feed inlet temperature, and feed flow rate were investigated. The permeate flux was strongly affected by the feed inlet temperature, feed flow rate, and boundary layer heat transfer coefficient. Since lowering the temperature polarization coefficient is essential enhance the process performance considerable and maximizing the heat transfer coefficient for maximizes the mass flux of distillate water. In this paper, the results of VMD experiments are used to measure the boundary layer heat transfer coefficient, and the experimental results are used to reevaluate the empirical constants in the Dittus- Boelter equation.

Parallel Double Splicing on Iso-Arrays

Image synthesis is an important area in image processing. To synthesize images various systems are proposed in the literature. In this paper, we propose a bio-inspired system to synthesize image and to study the generating power of the system, we define the class of languages generated by our system. We call image as array in this paper. We use a primitive called iso-array to synthesize image/array. The operation is double splicing on iso-arrays. The double splicing operation is used in DNA computing and we use this to synthesize image. A comparison of the family of languages generated by the proposed self restricted double splicing systems on iso-arrays with the existing family of local iso-picture languages is made. Certain closure properties such as union, concatenation and rotation are studied for the family of languages generated by the proposed model.

Power System Contingency Analysis Using Multiagent Systems

The demand of the energy management systems (EMS) set forth by modern power systems requires fast energy management systems. Contingency analysis is among the functions in EMS which is time consuming. In order to handle this limitation, this paper introduces agent based technology in the contingency analysis. The main function of agents is to speed up the performance. Negotiations process in decision making is explained and the issue set forth is the minimization of the operating costs. The IEEE 14 bus system and its line outage have been used in the research and simulation results are presented.

Complementary Energy Path Adiabatic Logic based Full Adder Circuit

In this paper, we present the design and experimental evaluation of complementary energy path adiabatic logic (CEPAL) based 1 bit full adder circuit. A simulative investigation on the proposed full adder has been done using VIRTUOSO SPECTRE simulator of cadence in 0.18μm UMC technology and its performance has been compared with the conventional CMOS full adder circuit. The CEPAL based full adder circuit exhibits the energy saving of 70% to the conventional CMOS full adder circuit, at 100 MHz frequency and 1.8V operating voltage.

Energy-Efficient Electrical Power Distribution with Multi-Agent Control at Parallel DC/DC Converters

Consumer electronics are pervasive. It is impossible to imagine a household or office without DVD players, digital cameras, printers, mobile phones, shavers, electrical toothbrushes, etc. All these devices operate at different voltage levels ranging from 1.8 to 20 VDC, in the absence of universal standards. The voltages available are however usually 120/230 VAC at 50/60 Hz. This situation makes an individual electrical energy conversion system necessary for each device. Such converters usually involve several conversion stages and often operate with excessive losses and poor reliability. The aim of the project presented in this paper is to design and implement a multi-channel DC/DC converter system, customizing the output voltage and current ratings according to the requirements of the load. Distributed, multi-agent techniques will be applied for the control of the DC/DC converters.

Ethanol Fuelled HCCI Engine: A Review

The greenhouse effect and limitations on carbon dioxide emissions concern engine maker and the future of the internal combustion engines should go toward substantially and improved thermal efficiency engine. Homogeneous charge compression ignition (HCCI) is an alternative high-efficiency technology for combustion engines to reduce exhaust emissions and fuel consumption. However, there are still tough challenges in the successful operation of HCCI engines, such as controlling the combustion phasing, extending the operating range, and high unburned hydrocarbon and CO emissions. HCCI and the exploitation of ethanol as an alternative fuel is one way to explore new frontiers of internal combustion engines with an eye towards maintaining its sustainability. This study was done to extend database knowledge about HCCI with ethanol a fuel.

Experiment Study on the Plasma Parameters Measurement in Backflow Region of Ion Thruster

The charge-exchange xenon (CEX) ion generated by ion thruster can backflow to the surface of spacecraft and threaten to the safety of spacecraft operation. In order to evaluate the effects of the induced plasma environment in backflow regions on the spacecraft, we designed a spherical single Langmuir probe of 5.8cm in diameter for measuring low-density plasma parameters in backflow region of ion thruster. In practice, the tests are performed in a two-dimensional array (40cm×60cm) composed of 20 sites. The experiment results illustrate that the electron temperature ranges from 3.71eV to 3.96eV, with the mean value of 3.82eV and the standard deviation of 0.064eV. The electron density ranges from 8.30×1012/m3 to 1.66×1013/m3, with the mean value of 1.30×1013/m3 and the standard deviation of 2.15×1012/m3. All data is analyzed according to the “ideal" plasma conditions of Maxwellian distributions.

Facial Expressions Recognition from Complex Background using Face Context and Adaptively Weighted sub-Pattern PCA

A new approach for facial expressions recognition based on face context and adaptively weighted sub-pattern PCA (Aw-SpPCA) has been presented in this paper. The facial region and others part of the body have been segmented from the complex environment based on skin color model. An algorithm has been proposed to accurate detection of face region from the segmented image based on constant ratio of height and width of face (δ= 1.618). The paper also discusses on new concept to detect the eye and mouth position. The desired part of the face has been cropped to analysis the expression of a person. Unlike PCA based on a whole image pattern, Aw-SpPCA operates directly on its sub patterns partitioned from an original whole pattern and separately extracts features from them. Aw-SpPCA can adaptively compute the contributions of each part and a classification task in order to enhance the robustness to both expression and illumination variations. Experiments on single standard face with five types of facial expression database shows that the proposed method is competitive.

Optimal Design of UPFC Based Damping Controller Using Iteration PSO

This paper presents a novel approach for tuning unified power flow controller (UPFC) based damping controller in order to enhance the damping of power system low frequency oscillations. The design problem of damping controller is formulated as an optimization problem according to the eigenvalue-based objective function which is solved using iteration particle swarm optimization (IPSO). The effectiveness of the proposed controller is demonstrated through eigenvalue analysis and nonlinear time-domain simulation studies under a wide range of loading conditions. The simulation study shows that the designed controller by IPSO performs better than CPSO in finding the solution. Moreover, the system performance analysis under different operating conditions show that the δE based controller is superior to the mB based controller.

A Laser Point Interaction System Integrating Mouse Functions

The computer has become an essential tool in modern life, and the combined use of a computer with a projector is very common in teaching and presentations. However, as typical computer operating devices involve a mouse or keyboard, when making presentations, users often need to stay near the computer to execute functions such as changing pages, writing, and drawing, thus, making the operation time-consuming, and reducing interactions with the audience. This paper proposes a laser pointer interaction system able to simulate mouse functions in order that users need not remain near the computer, but can directly use laser pointer operations from at a distance. It can effectively reduce the users- time spent by the computer, allowing for greater interactions with the audience.

Clustering based Voltage Control Areas for Localized Reactive Power Management in Deregulated Power System

In this paper, a new K-means clustering based approach for identification of voltage control areas is developed. Voltage control areas are important for efficient reactive power management in power systems operating under deregulated environment. Although, voltage control areas are formed using conventional hierarchical clustering based method, but the present paper investigate the capability of K-means clustering for the purpose of forming voltage control areas. The proposed method is tested and compared for IEEE 14 bus and IEEE 30 bus systems. The results show that this K-means based method is competing with conventional hierarchical approach

Counterpropagation Neural Network for Solving Power Flow Problem

Power flow (PF) study, which is performed to determine the power system static states (voltage magnitudes and voltage angles) at each bus to find the steady state operating condition of a system, is very important and is the most frequently carried out study by power utilities for power system planning, operation and control. In this paper, a counterpropagation neural network (CPNN) is proposed to solve power flow problem under different loading/contingency conditions for computing bus voltage magnitudes and angles of the power system. The counterpropagation network uses a different mapping strategy namely counterpropagation and provides a practical approach for implementing a pattern mapping task, since learning is fast in this network. The composition of the input variables for the proposed neural network has been selected to emulate the solution process of a conventional power flow program. The effectiveness of the proposed CPNN based approach for solving power flow is demonstrated by computation of bus voltage magnitudes and voltage angles for different loading conditions and single line-outage contingencies in IEEE 14-bus system.

A Flexible and Scalable Agent Platform for Multi-Agent Systems

Multi-agent system is composed by several agents capable of reaching the goal cooperatively. The system needs an agent platform for efficient and stable interaction between intelligent agents. In this paper we propose a flexible and scalable agent platform by composing the containers with multiple hierarchical agent groups. It also allows efficient implementation of multiple domain presentations of the agents unlike JADE. The proposed platform provides both group management and individual management of agents for efficiency. The platform has been implemented and tested, and it can be used as a flexible foundation of the dynamic multi-agent system targeting seamless delivery of ubiquitous services.

Universal Method for Timetable Construction based on Evolutionary Approach

Timetabling problems are often hard and timeconsuming to solve. Most of the methods of solving them concern only one problem instance or class. This paper describes a universal method for solving large, highly constrained timetabling problems from different domains. The solution is based on evolutionary algorithm-s framework and operates on two levels – first-level evolutionary algorithm tries to find a solution basing on given set of operating parameters, second-level algorithm is used to establish those parameters. Tabu search is employed to speed up the solution finding process on first level. The method has been used to solve three different timetabling problems with promising results.

An Approach to Task Modeling for User Interface Design

The model-based approach to user interface design relies on developing separate models capturing various aspects about users, tasks, application domain, presentation and dialog structures. This paper presents a task modeling approach for user interface design and aims at exploring mappings between task, domain and presentation models. The basic idea of our approach is to identify typical configurations in task and domain models and to investigate how they relate each other. A special emphasis is put on applicationspecific functions and mappings between domain objects and operational task structures. In this respect, we will address two layers in task decomposition: a functional (planning) layer and an operational layer.

Traffic Signal Coordinated Control Optimization: A Case Study

In the urban traffic network, the intersections are the “bottleneck point" of road network capacity. And the arterials are the main body in road network and the key factor which guarantees the normal operation of the city-s social and economic activities. The rapid increase in vehicles leads to seriously traffic jam and cause the increment of vehicles- delay. Most cities of our country are traditional single control system, which cannot meet the need for the city traffic any longer. In this paper, Synchro6.0 as a platform to minimize the intersection delay, optimizesingle signal cycle and split for Zhonghua Street in Handan City. Meanwhile, linear control system uses to optimize the phase for the t arterial road in this system. Comparing before and after use the control, capacities and service levels of this road and the adjacent road have improved significantly.

Simultaneous Reaction-Separation in a Microchannel Reactor with the Aid of a Guideline Structure

A microchannel with two inlets and two outlets was tested as a potential reactor to carry out two-phase catalytic phase transfer reaction with phase separation at the exit of the microchannel. The catalytic phase transfer reaction between benzyl chloride and sodium sulfide was chosen as a model reaction. The effect of operational time on the conversion was studied. By utilizing a multiphase parallel flow inside the microchannel reactor with the aid of a guideline structure, the catalytic phase reaction followed by phase separation could be ensured. The organic phase could be separated completely from one exit and part of the aqueous phase was separated purely and could be reused with slightly affecting the catalytic phase transfer reaction.