Ethanol Fuelled HCCI Engine: A Review

The greenhouse effect and limitations on carbon
dioxide emissions concern engine maker and the future of the
internal combustion engines should go toward substantially and
improved thermal efficiency engine. Homogeneous charge
compression ignition (HCCI) is an alternative high-efficiency
technology for combustion engines to reduce exhaust emissions and
fuel consumption. However, there are still tough challenges in the
successful operation of HCCI engines, such as controlling the
combustion phasing, extending the operating range, and high
unburned hydrocarbon and CO emissions. HCCI and the exploitation
of ethanol as an alternative fuel is one way to explore new frontiers
of internal combustion engines with an eye towards maintaining its
sustainability. This study was done to extend database knowledge
about HCCI with ethanol a fuel.





References:
<p>[1] X. Lu, D. Han, and Z. Huang, Fuel design and management for the
control of advanced compression-ignition combustion modes, Progress
in Energy and Combustion Science, 37, 741-783, 2011.
[2] M. Yao, Z. Zheng, and H. Liu, Progress and recent trends in
homogeneous charge compression ignition (HCCI) engines, Progress in
Energy and Combustion Science, 35(5): 398-437, 2009.
[3] N. P. Komninos, and C. D. Rakopoulos, Modeling HCCI combustion of
biofuels: A review, Renewable and Sustainable Energy Reviews, 16,
1588-1610, 2012.
[4] H. Zhao, Homogeneous Charge Compression Ignition (HCCI) and
Controlled Auto Ignition (CAI) Engines for the Automotive Industry,
Woodhead Publishing Limited 2007 (CRC) Press, Boca Raton, Florida).
[5] R. Sankaran, H. G. Im, and J. C. Hewson, analytical model for autoignition
in a thermally stratified HCCI engine, Combustion Science and
Technology, 179(9): 1963-1989, 2007.
[6] S. M. Aceves, D. L. Flowers, J. Martinez-Frias, J. R. Smith, R. Dibble,
M. Au, and J. Girard, HCCI combustion: analysis and experiments, SAE
Paper: 2001-01-2077, 2001.
[7] M. Shahbakhti, A. Ghazimirsaied, and C. R. Koch, Experimental study
of exhaust temperature variation in a homogeneous charge compression
ignition engine, J Automotive Engineering, 224: 1177-1197, 2010.
[8] K. Epping, S. Aceves, R. Bechtold, and J. Dec, The potential of HCCI
combustion for high efficiency and low emissions, SAE Paper: 2002-01-
1923, 2002.
[9] H. Santoso, J. Matthews, and W. Cheng, Characteristics of HCCI engine
operating in the negative-valve-overlap mode, SAE International, 2005.
[10] D. Blom, M. Karlsson, K. Ekholm, P. Tunestl, and R. Johansson, HCCI
engine modeling and control using conservation principles, SAE Paper:
2008-01-0789, 2008.
[11] S. M. Aceves, D. L. Flowers, F. Espinosa-Loza, J. Martinez-Frias, J.
Dec, M. Sjoberg, R. W. Dibble, and R. P. Hessel, Spatial Analysis of
Emissions Sources for HCCI Combustion at Low Loads Using a Multi-
Zone Model, SAE Paper: 2004-01-1910, 2004.
[12] L. Koopmans, H. Strm, S. Lundgren, O. Backlund, and I. Denbratt,
Demonstrating a SI-HCCI-SI mode change on a volvo 5-cylinder
electronic valve control engine, SAE Paper: 2003-01-0753, 2003.
[13] M. Canova, F. Chiara, J. Cowgill, S. Midlam-Mohler, Y. Guezennec,
and G. Rizzoni, Experimental characterization of mixed-mode HCCI/DI
combustion on a common rail diesel engine, SAE Paper: 2007-24-0085,
2007.
[14] F. Agrell, H.-E. Angstrm, B. Eriksson, J. Wikander, and J. Linderyd,
Integrated simulation and engine test of closed loop hcci control by aid
of variable valve timings, SAE Paper: 2003-01-0748, 2003.
[15] G. Haraldsson, P. Tunestl, B. Johansson, and J. Hyvnen, HCCI closedloop
combustion control using fast thermal management, SAE Paper:
2004-01-0943, 2004.
[16] G. Haraldsson, P. Tunestl, B. Johansson, and J. Hyvnen, HCCI
Combustion Phasing in a Multi Cylinder Engine Using Variable
Compression Ratio, SAE Paper: 2002-01-2858, 2002.
[17] G. Haraldsson, P. Tunestl, B. Johansson, and J. Hyvnen, HCCI
Combustion Phasing with Closed-Loop Combustion Control Using
Variable Compression Ratio in a Multi Cylinder Engine, SAE Paper:
2003-01-1830, 2003.
[18] J. Hyvnen, G. Haraldsson, and B. Johansson, Supercharging HCCI to
extend the operating range in a multi-cylinder VCR-HCCI engine, SAE
Paper 2003-01-3214, 2003.
[19] J.-O. Olsson, P. Tunestl, and B. Johansson, Closed-loop control of an
HCCI engine, SAE Paper: 2001-01-1896, 2001.
[20] M. Sjoberg, and J. E. Dec, Ethanol autoignition characteristics and
HCCI performance for wide ranges of engine speed, load and boost,
V119-3, 3(1): 84-106, 2010.
[21] C. S. Goh, K. T. Tan, K. T. Lee, and S. Bhatia, Bio-ethanol from
lignocellulose: Status, perspectives and challenges in Malaysia.
Bioresource Technology, 101(13): 4834-4841, 2010.
[22] D. Dai, Z. Hu, G. Pu, H. Li, and C. Wang, Energy efficiency and
potentials of cassava fuel ethanol in Guangxi region of China. Energy
Conversion and Management, 47(1314): 1686-1699, 2006.
[23] M. J. Christie, N. Fortino, and H. Yilmaz, Parameter optimization of a
turbo charged direct injection flex fuel si engine, SAE Int. J. Engines,
2(1): 123-133, 2009.
[24] M., Christensen, B. Johansson, and P. Einewall. Homogeneous charge
compression ignition (HCCI) using isooctane, ethanol and natural gas- a
comparison with spark ignition operation, SAE Paper: 972874, 1997.
[25] M. Christensen, and B. Johansson, Homogeneous charge compression
ignition with water injection, SAE Paper: 1999-01-0182, 1999.
[26] C. K. W Ng, and M. J. Thomson Modelling of the effect of fuel
reforming and EGR on the acceptable operating range of an ethanol
HCCI engine, International Journal of Vehicle Design, 44(1-2): 107-123,
2004.
[27] D. Yap, A. Megaritis, and M. L. Wyszynski, An investigation into
bioethanol homogeneous charge compression ignition (HCCI) engine
operation with residual gas trapping, Energy and Fuels, 18(5): 1315-
1323, 2004.
[28] D. Yap, J. Karlovsky, A. Megaritis, M. L. Wyszynski, and H. Xu, An
investigation into propane homogeneous charge compression ignition
(HCCI) engine operation with residual gas trapping, Fuel, 84(18): 2372-
2379, 2005.
[29] Y. Zhang, B.-Q. He, H. Xie, and H. Zhao, The combustion and emission
characteristics of ethanol on a port fuel injection HCCI engine, SAE
Paper: 2006-01-0631, 2006.
[30] J. H. Mack, R. W. Dibble, B. A. Buchholz, and D. L. Flowers, The
Effect of the Di-tertiary butyl peroxide (DTBP) additive on HCCI
combustion of fuel blends of ethanol and diethyl ether, SAE Paper:
2005- 01-2135, 2005.
[31] J. H. Mack, D. L. Flowers, B. A. Buchholz, and R. W. Dibble,
Investigation of HCCI combustion of diethyl ether and ethanol mixtures
using carbon 14 tracing and numerical simulations, Proceedings of the
Combustion Institute, 30(2): 2693-2700, 2005.
[32] H. Xie, Z. Wei, B. He, and H. Zhao, Comparison of HCCI combustion
respectively fueled with gasoline, ethanol and methanol through the
trapped residual gas strategy, SAE Paper: 2006-01-0635, 2006.
[33] G. Gnanam, A. Sobiesiak, G. Readerand, C. Zhang, An HCCI engine
fuelled with iso-octane and ethanol, SAE Paper: 2006-01-3246, 2006.
[34] D. L. Flowers, S. M. Aceves, and J. M. Frias, Improving Ethanol Life
Cycle Energy Efficiency by Direct Utilization of Wet Ethanol in HCCI
Engines, SAE Paper: 2007-01-1867, 2007.
[35] A. Megaritis, D. Yap, and M. L. Wyszynski, Effect of water blending on
bioethanol HCCI combustion with forced induction and residual gas
trapping. Energy, 32(12): 2396-2400, 2007.
[36] A. Megaritis, D. Yap, and M. L. Wyszynski, Effect of inlet valve timing
and water blending on bioethanol HCCI combustion using forced
induction and residual gas trapping. Fuel, 87(6): 732-739, 2008.
[37] G. M. Shaver, M. J. Roelle, and J. Christian Gerdes, Modeling cycle-tocycle
dynamics and mode transition in HCCI engines with variable valve
actuation, Control Engineering Practice, 14(3): 213-222, 2006.
[38] J. P. Szybist, Fuel-Specific Effect of Exhaust Gas Residuals on HCCI
Combustion: A Modeling Study, SAE Paper: 2008-01-2402, 2008.
[39] A. Viggiano, and V .Magi, Multidimensional simulation of ethanol
HCCI engines, SAE Paper: 2009-24-0031, 2009.
[40] A.Vressner, R. Egnell, and B. Johansson, Combustion Chamber
Geometry Effects on the Performance of an Ethanol Fueled HCCI
Engine. SAE Paper: 2008-01-1656, 2008.
[41] T. Joelsson, R. Yu, X. S. Bai, A. Vressner, and B. Johansson, Large
eddy simulation and experiments of the auto-ignition process of lean
ethanol/air mixture in HCCI engines, SAE Int. J. Fuels Lubr., 1(1):
1110-1119, 2008.
[42] J. H. Mack, S. M. Aceves, and R. W. Dibble, Demonstrating direct use
of wet ethanol in a homogeneous charge compression ignition (HCCI)
engine. Energy, 34(6): 782-787, 2009.
[43] R. K. Maurya, and A. K. Agarwal, Experimental study of combustion
and emission characteristics of ethanol fuelled port injected
homogeneous charge compression ignition (HCCI) combustion engine,
Applied Energy, 88(4): 1169-1180, 2011.
[44] M. Sjoberg, and J. E. Dec, Effects of EGR and its constituents on HCCI
autoignition of ethanol. Proceedings of the Combustion Institute, 33(2):
3031-3038, 2011.
[45] A. Viggiano, and V. Magi, A comprehensive investigation on the
emissions of ethanol HCCI engines, Applied Energy, 93(0): 277-287,
2012.
[46] S. Saxena, S. Schneider, S. Aceves, and R. Dibble, Wet ethanol in HCCI
engines with exhaust heat recovery to improve the energy balance of
ethanol fuels, Applied Energy, 98(0): 448-457, 2012.
[47] B. Bahri, A. A. Aziz, M. Shahbakhti, and M. F. Muhamad Said, Misfire
detection based on statistical analysis for an ethanol fuelled HCCI
engine, International Review of Mechanical Engineering (IREME), 6
(6): 1276-1282, 2012.
[48] B. Bahri, A. A. Aziz, M. Shahbakhti, and M. F. Muhamad Said,
Understanding and detecting misfire in an HCCI engine fuelled with
ethanol, Applied Energy, 108(0): 24-33, 2013.</p>