Supervisory Fuzzy Learning Control for Underwater Target Tracking

This paper presents recent work on the improvement of the robotics vision based control strategy for underwater pipeline tracking system. The study focuses on developing image processing algorithms and a fuzzy inference system for the analysis of the terrain. The main goal is to implement the supervisory fuzzy learning control technique to reduce the errors on navigation decision due to the pipeline occlusion problem. The system developed is capable of interpreting underwater images containing occluded pipeline, seabed and other unwanted noise. The algorithm proposed in previous work does not explore the cooperation between fuzzy controllers, knowledge and learnt data to improve the outputs for underwater pipeline tracking. Computer simulations and prototype simulations demonstrate the effectiveness of this approach. The system accuracy level has also been discussed.

Early Supplier Involvement in New Product Development: A Casting-Network Collaboration Model

Early supplier involvement (ESI) benefits new product development projects several ways. Nevertheless, many castuser companies do not know the advantages of ESI and therefore do not utilize it. This paper presents reasons why to utilize ESI in casting industry and how that can be done. Further, this paper presents advantages and challenges related to ESI in casting industry, and introduces a Casting-Network Collaboration Model. The model presents practices for companies to build advantageous collaborative relationships. More detailed, the model describes three levels for company-network relationships in casting industry with different degrees of collaboration, and requirements for operating in each level. In our research, ESI was found to influence, for example, on project time, component cost, and quality. In addition, challenges related to ESI, such as, a lack of mutual trust and unawareness about the advantages were found. Our research approach was a case study including four cases.

A Comparison of Fuel Usage and Harvest Capacity in Self-Propelled Forage Harvesters

Self-propelled forage harvesters in the 850 horsepower range were tested over three years for fuel consumption, throughput and quality of chop for corn silage. Cut length had a significant effect on fuel consumption, throughput and some aspects of chop quality. Measure cut length was often different than theoretical length of cut. Where cut length was equivalent fuel consumption and throughput were equivalent across brands. Shortening cut length from 17 to 11mm increases fuel consumption 53 percent measured as Mg of silage harvested per gallon of fuel used and a 42 percent decrease in capacity as tons of fresh material per hour run time.

A Promising Approach to Supporting Knowledge-Intensive Business Processes: Business Case Management

Through the course of this paper we define Business Case Management and its characteristics, and highlight its link to knowledge workers. Business Case Management combines knowledge and process effectively, supporting the ad hoc and unpredictable nature of cases, and coordinate a range of other technologies to appropriately support knowledge-intensive processes. We emphasize the growing importance of knowledge workers and the current poor support for knowledge work automation. We also discuss the challenges in supporting this kind of knowledge work and propose a novel approach to overcome these challenges.

Effects of Sodium Bicarbonate Content and Vulcanization Method on Properties of NBR/PVC Thermal Insulator Foam

In this research sodium bicarbonate (NaHCO3) was introduced to generate carbon dioxide gas (CO2) to the existing nitrogen gas (N2) of elastomeric foam, to lower thermal conductivity (K). Various loadings of NaHCO3 (0 to 60 phr) were added into the azodicarbonamide (AZC)-containing compound and its properties were then determined. Two vulcanization methods, i.e., hot air and infrared (IR), were employed and compared in this study. Results revealed that compound viscosity tended to increase slightly with increasing NaHCO3 content but cure time was delayed. The effect of NaHCO3 content on thermal conductivity depended on the vulcanization method. For hot air method, the thermal conductivity was insignificantly changed with increasing NaHCO3 up to 40 phr whereas it tended to decrease gradually for IR method. At higher NaHCO3 content (60 phr), unexpected increase of thermal conductivity was observed. The water absorption was also determined and foam structures were then used to explain the results.

Preparation and Bioactivity Evaluation of Bone like Hydroxyapatite - Bioglass Composite

In this study, hydroxyapatite (HA) composites are prepared on addition of 30%CaO-30%P2O5-40%Na2 O based glass to pure HA, in proportion of 2, 5, and 10 wt %. Each composition was sintered over a range of temperatures. The quantitative phase analysis was carried out using XRD and the microstructures were studied using SEM. The density, microhardness, and compressive strength have shown increase with the increasing amount of glass addition. The resulting composites have chemical compositions that are similar to the inorganic constituent of the mineral part of bone, and constitutes trace elements like Na. X-ray diffraction showed no decomposition of HA to secondary phases, however, the glass reinforced-HA composites contained a HA phase and variable amounts of tricalcium phosphate phase, depending on the amount of bioglass added. The HA-composite material exhibited higher compressive strength compared to sintered HA. The HA composite reinforced with 10 wt % bioglass showed highest bioactivity level.

A Cooperative Multi-Robot Control Using Ad Hoc Wireless Network

In this paper, a Cooperative Multi-robot for Carrying Targets (CMCT) algorithm is proposed. The multi-robot team consists of three robots, one is a supervisor and the others are workers for carrying boxes in a store of 100×100 m2. Each robot has a self recharging mechanism. The CMCT minimizes robot-s worked time for carrying many boxes during day by working in parallel. That is, the supervisor detects the required variables in the same time another robots work with previous variables. It works with straightforward mechanical models by using simple cosine laws. It detects the robot-s shortest path for reaching the target position avoiding obstacles by using a proposed CMCT path planning (CMCT-PP) algorithm. It prevents the collision between robots during moving. The robots interact in an ad hoc wireless network. Simulation results show that the proposed system that consists of CMCT algorithm and its accomplished CMCT-PP algorithm achieves a high improvement in time and distance while performing the required tasks over the already existed algorithms.

Dextran/Poly(L-histidine) Graft Copolymer for pH-Responsive Drug Delivery

pH-sensitive drug targeting using nanoparticles for cancer chemotherapy have been spotlighted in recent decades. Graft copolymer composed of poly (L-histidine) (PHS) and dextran (DexPHS) was synthesized and pH-sensitive nanoparticles were fabricated for pH-responsive drug delivery of doxorubicin (DOX). Nanoparticles of DexPHS showed pH-sensitive changes in particle sizes and drug release behavior, i.e. particle sizes and drug release rate were increased at acidic pH, indicating that DexPHS nanoparticles have pH-sensitive drug delivery potentials. Antitumor activity of DOX-incorporated DexPHS nanoparticles were studied using CT26 colorectal carcinoma cells. Results indicated that fluorescence intensity was higher at acidic pH than basic pH. These results indicated that DexPHS nanoparticles have pH-responsive drug targeting.

Determination of Cr Content in Canned Fish Marketed in Iran

The presence of heavy metals in the environment could constitute a hazard to food security and public health. These can be accumulated in aquatic animals such as fish. Samples of four popular brands of canned fish in the Iranian market (yellowfin tuna, common Kilka, Kawakawa and longtail tuna) were analyzed for level of Cr after wet digestion with acids using graphite furnace atomic absorption spectrophotometry. The mean concentrations for Cr in the different brands were: 2.57, 3.24, 3.16 and 1.65 μg/g for brands A, B, C and D respectively. Significant differences were observed in the Cr levels between all of the different brands of canned fish evaluated in this study. The Cr concentrations for the varieties of canned fishes were generally within the FAO/WHO, U.S. FDA and U.S. EPA recommended limits for fish.

Fuzzy-Genetic Optimal Control for Four Degreeof Freedom Robotic Arm Movement

In this paper, we present optimal control for movement and trajectory planning for four degrees-of-freedom robot using Fuzzy Logic (FL) and Genetic Algorithms (GAs). We have evaluated using Fuzzy Logic (FL) and Genetic Algorithms (GAs) for four degree-of-freedom (4 DOF) robotics arm, Uncertainties like; Movement, Friction and Settling Time in robotic arm movement have been compensated using Fuzzy logic and Genetic Algorithms. The development of a fuzzy genetic optimization algorithm is presented and discussed. The result are compared only GA and Fuzzy GA. This paper describes genetic algorithms, which is designed to optimize robot movement and trajectory. Though the model represents is a general model for redundant structures and could represent any n-link structures. The result is a complete trajectory planning with Fuzzy logic and Genetic algorithms demonstrating the flexibility of this technique of artificial intelligence.

Feature Selection for Breast Cancer Diagnosis: A Case-Based Wrapper Approach

This article addresses feature selection for breast cancer diagnosis. The present process contains a wrapper approach based on Genetic Algorithm (GA) and case-based reasoning (CBR). GA is used for searching the problem space to find all of the possible subsets of features and CBR is employed to estimate the evaluation result of each subset. The results of experiment show that the proposed model is comparable to the other models on Wisconsin breast cancer (WDBC) dataset.

Millimeter Wave I/Q Generation with the Inductive Resonator Matched Poly-Phase Filter

A way of generating millimeter wave I/Q signal using inductive resonator matched poly-phase filter is suggested. Normally the poly-phase filter generates quite accurate I/Q phase and magnitude but the loss of the filter is considerable due to series connection of passive RC components. This loss term directly increases system noise figure when the poly-phase filter is used in RF Front-end. The proposed matching method eliminates above mentioned loss and in addition provides gain on the passive filter. The working algorithm is illustrated by mathematical analysis. The generated I/Q signal is used in implementing millimeter wave phase shifter for the 60 GHz communication system to verify its effectiveness. The circuit is fabricated in 90 nm TSMC RF CMOS process under 1.2 V supply voltage. The measurement results showed that the suggested method improved gain by 6.5 dB and noise by 2.3 dB. The summary of the proposed I/Q generation is compared with previous works.

Web Content Mining: A Solution to Consumer's Product Hunt

With the rapid growth in business size, today's businesses orient towards electronic technologies. Amazon.com and e-bay.com are some of the major stakeholders in this regard. Unfortunately the enormous size and hugely unstructured data on the web, even for a single commodity, has become a cause of ambiguity for consumers. Extracting valuable information from such an everincreasing data is an extremely tedious task and is fast becoming critical towards the success of businesses. Web content mining can play a major role in solving these issues. It involves using efficient algorithmic techniques to search and retrieve the desired information from a seemingly impossible to search unstructured data on the Internet. Application of web content mining can be very encouraging in the areas of Customer Relations Modeling, billing records, logistics investigations, product cataloguing and quality management. In this paper we present a review of some very interesting, efficient yet implementable techniques from the field of web content mining and study their impact in the area specific to business user needs focusing both on the customer as well as the producer. The techniques we would be reviewing include, mining by developing a knowledge-base repository of the domain, iterative refinement of user queries for personalized search, using a graphbased approach for the development of a web-crawler and filtering information for personalized search using website captions. These techniques have been analyzed and compared on the basis of their execution time and relevance of the result they produced against a particular search.

Mathematical Modeling of Surface Roughness in Surface Grinding Operation

A mathematical model of the surface roughness has been developed by using response surface methodology (RSM) in grinding of AISI D2 cold work tool steels. Analysis of variance (ANOVA) was used to check the validity of the model. Low and high value for work speed and feed rate are decided from design of experiment. The influences of all machining parameters on surface roughness have been analyzed based on the developed mathematical model. The developed prediction equation shows that both the feed rate and work speed are the most important factor that influences the surface roughness. The surface roughness was found to be the lowers with the used of low feed rate and low work speed. Accuracy of the best model was proved with the testing data.

Roller Guide Design and Manufacturing for Spatial Cylindrical Cams

This paper was aimed at developing a computer aided design and manufacturing system for spatial cylindrical cams. In the proposed system, a milling tool with a diameter smaller than that of the roller, instead of the standard cutter for traditional machining process, was used to generate the tool path for spatial cams. To verify the feasibility of the proposed method, a multi-axis machining simulation software was further used to simulate the practical milling operation of spatial cams. It was observed from computer simulation that the tool path of small-sized cutter were within the motion range of a standard cutter, no occurrence of overcutting. Examination of a finished cam component clearly verifies the accuracy of the tool path generated for small-sized milling tool. It is believed that the use of small-sized cutter for the machining of the spatial cylindrical cams can generate a better surface morphology with higher accuracy. The improvement in efficiency and cost for the manufacturing of the spatial cylindrical cam can be expected through the proposed method.

An HCI Template for Distributed Applications

Both software applications and their development environment are becoming more and more distributed. This trend impacts not only the way software computes, but also how it looks. This article proposes a Human Computer Interface (HCI) template from three representative applications we have developed. These applications include a Multi-Agent System based software, a 3D Internet computer game with distributed game world logic, and a programming language environment used in constructing distributed neural network and its visualizations. HCI concepts that are common to these applications are described in abstract terms in the template. These include off-line presentation of global entities, entities inside a hierarchical namespace, communication and languages, reconfiguration of entity references in a graph, impersonation and access right, etc. We believe the metaphor that underlies an HCI concept as well as the relationships between a bunch of HCI concepts are crucial to the design of software systems and vice versa.

Energetic Considerations for Sputter Deposition Processes

Sputter deposition processes, especially for sputtering from metal targets, are well investigated. For practical reasons, i.e. for industrial processes, energetic considerations for sputter deposition are useful in order to optimize the sputtering process. In particular, for substrates at floating conditions it is required to obtain energetic conditions during film growth that enables sufficient dense metal films of good quality. The influence of ion energies, energy density and momentum transfer is thus examined both for sputtering at the target as well as during film growth. Different regimes dominated by ion energy, energy density and momentum transfer were identified by using different plasma sources and by varying power input, pressure and bias voltage.

Variable Input Range Continuous-time Switched Current Delta-sigma Analog Digital Converter for RFID CMOS Biosensor Applications

Continuous-time delta-sigma analog digital converter (ADC) for radio frequency identification (RFID) complementary metal oxide semiconductor (CMOS) biosensor has been reported. This delta-sigma ADC is suitable for digital conversion of biosensor signal because of small process variation, and variable input range. As the input range of continuous-time switched current delta-sigma ADC (Dynamic range : 50 dB) can be limited by using current reference, amplification of biosensor signal is unnecessary. The input range is switched to wide input range mode or narrow input range mode by command of current reference. When the narrow input range mode, the input range becomes ± 0.8 V. The measured power consumption is 5 mW and chip area is 0.31 mm^2 using 1.2 um standard CMOS process. Additionally, automatic input range detecting system is proposed because of RFID biosensor applications.

Comparative Study of the Static and Dynamic Analysis of Multi-Storey Irregular Building

As the world move to the accomplishment of Performance Based Engineering philosophies in seismic design of Civil Engineering structures, new seismic design provisions require Structural Engineers to perform both static and dynamic analysis for the design of structures. While Linear Equivalent Static Analysis is performed for regular buildings up to 90m height in zone I and II, Dynamic Analysis should be performed for regular and irregular buildings in zone IV and V. Dynamic Analysis can take the form of a dynamic Time History Analysis or a linear Response Spectrum Analysis. In present study, Multi-storey irregular buildings with 20 stories have been modeled using software packages ETABS and SAP 2000 v.15 for seismic zone V in India. This paper also deals with the effect of the variation of the building height on the structural response of the shear wall building. Dynamic responses of building under actual earthquakes, EL-CENTRO 1949 and CHI-CHI Taiwan 1999 have been investigated. This paper highlights the accuracy and exactness of Time History analysis in comparison with the most commonly adopted Response Spectrum Analysis and Equivalent Static Analysis.

Finite Element Prediction of Hip Fracture during a Sideways Fall

Finite element method was applied to model damage development in the femoral neck during a sideways fall. The femoral failure was simulated using the maximum principal strain criterion. The evolution of damage was consistent with previous studies. It was initiated by compressive failure at the junction of the superior aspect of the femoral neck and the greater trochanter. It was followed by tensile failure that occurred at the inferior aspect of the femoral neck before a complete transcervical fracture was observed. The estimated failure line was less than 50° from the horizontal plane (Pauwels type II).