Abstract: Structural design and analysis is an important and time-consuming process, particularly at the conceptual design stage. Decisions made at this stage can have an enormous effect on the entire project, as it becomes ever costlier and more difficult to alter the choices made early on in the construction process. Hence, optimisation of the early stages of structural design can provide important efficiencies in terms of cost and time. This paper suggests a structural design optimisation (SDO) framework in which Genetic Algorithms (GAs) may be used to semi-automate the production and optimisation of early structural design alternatives. This framework has the potential to leverage conceptual structural design innovation in Architecture, Engineering and Construction (AEC) projects. Moreover, this framework improves the collaboration between the architectural stage and the structural stage. It will be shown that this SDO framework can make this achievable by generating the structural model based on the extracted data from the architectural model. At the moment, the proposed SDO framework is in the process of validation, involving the distribution of an online questionnaire among structural engineers in the UK.
Abstract: Real-time optimization has been considered an effective approach for improving energy efficient operation of heating, ventilation, and air-conditioning (HVAC) systems. In model-based real-time optimization, model mismatches cannot be avoided. When model mismatches are significant, the performance of the real-time optimization will be impaired and hence the expected energy saving will be reduced. In this paper, the model mismatches for chiller plant on real-time optimization are considered. In the real-time optimization of the chiller plant, simplified semi-physical or grey box model of chiller is always used, which should be identified using available operation data. To overcome the model mismatches associated with the chiller model, hybrid Genetic Algorithms (HGAs) method is used for online real-time training of the chiller model. HGAs combines Genetic Algorithms (GAs) method (for global search) and traditional optimization method (i.e. faster and more efficient for local search) to avoid conventional hit and trial process of GAs. The identification of model parameters is synthesized as an optimization problem; and the objective function is the Least Square Error between the output from the model and the actual output from the chiller plant. A case study is used to illustrate the implementation of the proposed method. It has been shown that the proposed approach is able to provide reliability in decision making, enhance the robustness of the real-time optimization strategy and improve on energy performance.
Abstract: The customers use the best compromise criterion
between price and quality of service (QoS) to select or change
their Service Provider (SP). The SPs share the same market and
are competing to attract more customers to gain more profit. Due
to the divergence of SPs interests, we believe that this situation is a
non-cooperative game of price and QoS. The game converges to an
equilibrium position known Nash Equilibrium (NE). In this work, we
formulate a game theoretic framework for the dynamical behaviors
of SPs. We use Genetic Algorithms (GAs) to find the price and
QoS strategies that maximize the profit for each SP and illustrate
the corresponding strategy in NE. In order to quantify how this NE
point is performant, we perform a detailed analysis of the price of
anarchy induced by the NE solution. Finally, we provide an extensive
numerical study to point out the importance of considering price and
QoS as a joint decision parameter.
Abstract: Time and cost are the main goals of the construction
project management. The first schedule developed may not be a
suitable schedule for beginning or completing the project to achieve
the target completion time at a minimum total cost. In general, there
are trade-offs between time and cost (TCT) to complete the activities
of a project. This research presents genetic algorithms (GAs) multiobjective
model for project scheduling considering different
scenarios such as least cost, least time, and target time.
Abstract: In the context of spectrum surveillance, a method to
recover the code of spread spectrum signal is presented, whereas the
receiver has no knowledge of the transmitter-s spreading sequence.
The approach is based on a genetic algorithm (GA), which is forced to
model the received signal. Genetic algorithms (GAs) are well known
for their robustness in solving complex optimization problems.
Experimental results show that the method provides a good
estimation, even when the signal power is below the noise power.
Abstract: Proteins or genes that have similar sequences are likely to perform the same function. One of the most widely used techniques for sequence comparison is sequence alignment. Sequence alignment allows mismatches and insertion/deletion, which represents biological mutations. Sequence alignment is usually performed only on two sequences. Multiple sequence alignment, is a natural extension of two-sequence alignment. In multiple sequence alignment, the emphasis is to find optimal alignment for a group of sequences. Several applicable techniques were observed in this research, from traditional method such as dynamic programming to the extend of widely used stochastic optimization method such as Genetic Algorithms (GAs) and Simulated Annealing. A framework with combination of Genetic Algorithm and Simulated Annealing is presented to solve Multiple Sequence Alignment problem. The Genetic Algorithm phase will try to find new region of solution while Simulated Annealing can be considered as an alignment improver for any near optimal solution produced by GAs.
Abstract: In the context of spectrum surveillance, a new method
to recover the code of spread spectrum signal is presented, while the
receiver has no knowledge of the transmitter-s spreading sequence. In
our previous paper, we used Genetic algorithm (GA), to recover
spreading code. Although genetic algorithms (GAs) are well known
for their robustness in solving complex optimization problems, but
nonetheless, by increasing the length of the code, we will often lead
to an unacceptable slow convergence speed. To solve this problem we
introduce Particle Swarm Optimization (PSO) into code estimation in
spread spectrum communication system. In searching process for
code estimation, the PSO algorithm has the merits of rapid
convergence to the global optimum, without being trapped in local
suboptimum, and good robustness to noise. In this paper we describe
how to implement PSO as a component of a searching algorithm in
code estimation. Swarm intelligence boasts a number of advantages
due to the use of mobile agents. Some of them are: Scalability, Fault
tolerance, Adaptation, Speed, Modularity, Autonomy, and
Parallelism. These properties make swarm intelligence very attractive
for spread spectrum code estimation. They also make swarm
intelligence suitable for a variety of other kinds of channels. Our
results compare between swarm-based algorithms and Genetic
algorithms, and also show PSO algorithm performance in code
estimation process.
Abstract: This paper describes a practical approach to design
and develop a hybrid learning with acceleration feedback control
(HLC) scheme for input tracking and end-point vibration suppression
of flexible manipulator systems. Initially, a collocated proportionalderivative
(PD) control scheme using hub-angle and hub-velocity
feedback is developed for control of rigid-body motion of the system.
This is then extended to incorporate a further hybrid control scheme
of the collocated PD control and iterative learning control with
acceleration feedback using genetic algorithms (GAs) to optimize the
learning parameters. Experimental results of the response of the
manipulator with the control schemes are presented in the time and
frequency domains. The performance of the HLC is assessed in terms
of input tracking, level of vibration reduction at resonance modes and
robustness with various payloads.
Abstract: The objective of this research is to calculate the
optimal inventory lot-sizing for each supplier and minimize the total
inventory cost which includes joint purchase cost of the products,
transaction cost for the suppliers, and holding cost for remaining
inventory. Genetic algorithms (GAs) are applied to the multi-product
and multi-period inventory lot-sizing problems with supplier
selection under storage space. Also a maximum storage space for the
decision maker in each period is considered. The decision maker
needs to determine what products to order in what quantities with
which suppliers in which periods. It is assumed that demand of
multiple products is known over a planning horizon. The problem is
formulated as a mixed integer programming and is solved with the
GAs. The detailed computation results are presented.
Abstract: Genetic Algorithms (GAs) are direct searching
methods which require little information from design space. This
characteristic beside robustness of these algorithms makes them to be
very popular in recent decades. On the other hand, while this method
is employed, there is no guarantee to achieve optimum results. This
obliged designer to run such algorithms more than one time to
achieve more reliable results. There are many attempts to modify the
algorithms to make them more efficient. In this paper, by application
of fractal dimension (particularly, Box Counting Method), the
complexity of design space are established for determination of
mutation and crossover probabilities (Pm and Pc). This methodology
is followed by a numerical example for more clarification. It is
concluded that this modification will improve efficiency of GAs and
make them to bring about more reliable results especially for design
space with higher fractal dimensions.
Abstract: Genetic algorithms (GAs) have been widely used for
global optimization problems. The GA performance depends highly
on the choice of the search space for each parameter to be optimized.
Often, this choice is a problem-based experience. The search space
being a set of potential solutions may contain the global optimum
and/or other local optimums. A bad choice of this search space
results in poor solutions. In this paper, our approach consists in
extending the search space boundaries during the GA optimization,
only when it is required. This leads to more diversification of GA
population by new solutions that were not available with fixed search
space boundaries. So, these dynamic search spaces can improve the
GA optimization performances. The proposed approach is applied to
power system stabilizer optimization for multimachine power system
(16-generator and 68-bus). The obtained results are evaluated and
compared with those obtained by ordinary GAs. Eigenvalue analysis
and nonlinear system simulation results show the effectiveness of the
proposed approach to damp out the electromechanical oscillation and
enhance the global system stability.
Abstract: The design of a gravity dam is performed through an
interactive process involving a preliminary layout of the structure
followed by a stability and stress analysis. This study presents a
method to define the optimal top width of gravity dam with genetic
algorithm. To solve the optimization task (minimize the cost of the
dam), an optimization routine based on genetic algorithms (GAs) was
implemented into an Excel spreadsheet. It was found to perform well
and GA parameters were optimized in a parametric study. Using the
parameters found in the parametric study, the top width of gravity
dam optimization was performed and compared to a gradient-based
optimization method (classic method). The accuracy of the results
was within close proximity. In optimum dam cross section, the ratio
of is dam base to dam height is almost equal to 0.85, and ratio of dam
top width to dam height is almost equal to 0.13. The computerized
methodology may provide the help for computation of the optimal
top width for a wide range of height of a gravity dam.
Abstract: In this paper, we present optimal control for
movement and trajectory planning for four degrees-of-freedom robot
using Fuzzy Logic (FL) and Genetic Algorithms (GAs). We have
evaluated using Fuzzy Logic (FL) and Genetic Algorithms (GAs)
for four degree-of-freedom (4 DOF) robotics arm, Uncertainties like;
Movement, Friction and Settling Time in robotic arm movement
have been compensated using Fuzzy logic and Genetic Algorithms.
The development of a fuzzy genetic optimization algorithm is
presented and discussed. The result are compared only GA and
Fuzzy GA. This paper describes genetic algorithms, which is
designed to optimize robot movement and trajectory. Though the
model represents is a general model for redundant structures and
could represent any n-link structures. The result is a complete
trajectory planning with Fuzzy logic and Genetic algorithms
demonstrating the flexibility of this technique of artificial
intelligence.
Abstract: In this research paper we have presented control
architecture for robotic arm movement and trajectory planning using
Fuzzy Logic (FL) and Genetic Algorithms (GAs). This architecture is
used to compensate the uncertainties like; movement, friction and
settling time in robotic arm movement. The genetic algorithms and
fuzzy logic is used to meet the objective of optimal control
movement of robotic arm. This proposed technique represents a
general model for redundant structures and may extend to other
structures. Results show optimal angular movement of joints as result
of evolutionary process. This technique has edge over the other
techniques as minimum mathematics complexity used.