Abstract: The robot manipulator is an equipment that stands out for two reasons: Firstly because of its characteristics of movement and reprogramming, resembling the arm; secondly, by adding several areas of knowledge of science and engineering. The present work shows the development of the prototype of a robotic manipulator driven by a Programmable Logic Controller (PLC), having two degrees of freedom, which allows the movement and displacement of mechanical parts, tools, and objects in general of small size, through an electronic system. The aim is to study direct and inverse kinematics of the robotic manipulator to describe the translation and rotation between two adjacent links of the robot through the Denavit-Hartenberg parameters. Currently, due to the many resources that microcomputer systems offer us, robotics is going through a period of continuous growth that will allow, in a short time, the development of intelligent robots with the capacity to perform operations that require flexibility, speed and precision.
Abstract: For the stability and control demand of offshore small floating platform, a 2-HUS/U parallel mechanism was presented as offshore platform. Inverse kinematics was obtained by institutional constraint equation, and the dynamic model of offshore 2-HUS/U parallel platform was derived based on rigid body’s Lagrangian method. The equivalent moment of inertia, damping and driving force/torque variation of offshore 2-HUS/U parallel platform were analyzed. A numerical example shows that, for parallel platform of given motion, system’s equivalent inertia changes 1.25 times maximally. During the movement of platform, they change dramatically with the system configuration and have coupling characteristics. The maximum equivalent drive torque is 800 N. At the same time, the curve of platform’s driving force/torque is smooth and has good sine features. The control system needs to be adjusted according to kinetic equation during stability and control and it provides a basis for the optimization of control system.
Abstract: Robots are now playing a very promising role in industries. Robots are commonly used in applications in repeated operations or where operation by human is either risky or not feasible. In most of the industrial applications, robotic arm manipulators are widely used. Robotic arm manipulator with two link or three link structures is commonly used due to their low degrees-of-freedom (DOF) movement. As the DOF of robotic arm increased, complexity increases. Instrumentation involved with robotics plays very important role in order to interact with outer environment. In this work, optimal control for movement of various DOFs of robotic arm using various soft computing techniques has been presented. We have discussed about different robotic structures having various DOF robotics arm movement. Further stress is on kinematics of the arm structures i.e. forward kinematics and inverse kinematics. Trajectory planning of robotic arms using soft computing techniques is demonstrating the flexibility of this technique. The performance is optimized for all possible input values and results in optimized movement as resultant output. In conclusion, soft computing has been playing very important role for achieving optimized movement of robotic arm. It also requires very limited knowledge of the system to implement soft computing techniques.
Abstract: Manufacturing technologies are becoming continuously
more diversified over the years. The increasing use of robots for
various applications such as assembling, painting, welding has also
affected the field of machining. Machining robots can deal with
larger workspaces than conventional machine-tools at a lower cost
and thus represent a very promising alternative for machining
applications. Furthermore, their inherent structure ensures them a
great flexibility of motion to reach any location on the workpiece with
the desired orientation. Nevertheless, machining robots suffer from
a lack of stiffness at their joints restricting their use to applications
involving low cutting forces especially finishing operations. Vibratory
instabilities may also happen while machining and deteriorate the
precision leading to scrap parts. Some researchers are therefore
concerned with the identification of optimal parameters in robotic
machining. This paper continues the development of a virtual robotic
machining simulator in order to find optimized cutting parameters in
terms of depth of cut or feed per tooth for example. The simulation
environment combines an in-house milling routine (DyStaMill)
achieving the computation of cutting forces and material removal
with an in-house multibody library (EasyDyn) which is used to
build a dynamic model of a 3-DOF planar robot with flexible links.
The position of the robot end-effector submitted to milling forces is
controlled through an inverse kinematics scheme while controlling
the position of its joints separately. Each joint is actuated through
a servomotor for which the transfer function has been computed
in order to tune the corresponding controller. The output results
feature the evolution of the cutting forces when the robot structure
is deformable or not and the tracking errors of the end-effector.
Illustrations of the resulting machined surfaces are also presented.
The consideration of the links flexibility has highlighted an increase
of the cutting forces magnitude. This proof of concept will aim
to enrich the database of results in robotic machining for potential
improvements in production.
Abstract: This paper presents the trajectory tracking control of a
spatial redundant hybrid manipulator. This manipulator consists of
two parallel manipulators which are a variable geometry truss (VGT)
module. In fact, each VGT module with 3-degress of freedom (DOF)
is a planar parallel manipulator and their operational planes of these
VGT modules are arranged to be orthogonal to each other. Also, the
manipulator contains a twist motion part attached to the top of the
second VGT module to supply the missing orientation of the endeffector.
These three modules constitute totally 7-DOF hybrid
(parallel-parallel) redundant spatial manipulator. The forward
kinematics equations of this manipulator are obtained, then,
according to these equations, the inverse kinematics is solved based
on an optimization with the joint limit avoidance. The dynamic
equations are formed by using virtual work method. In order to test
the performance of the redundant manipulator and the controllers
presented, two different desired trajectories are followed by using the
computed force control method and a switching control method. The
switching control method is combined with the computed force
control method and genetic algorithm. In the switching control
method, the genetic algorithm is only used for fine tuning in the
compensation of the trajectory tracking errors.
Abstract: During manned exploration of space, missions will require astronaut crewmembers to perform Extra Vehicular Activities (EVAs) for a variety of tasks. These EVAs take place after long periods of operations in space, and in and around unique vehicles, space structures and systems. Considering the remoteness and time spans in which these vehicles will operate, EVA system operations should utilize common worksites, tools and procedures as much as possible to increase the efficiency of training and proficiency in operations. All of the preparations need to be carried out based on studies of astronaut motions. Until now, development and training activities associated with the planned EVAs in Russian and U.S. space programs have relied almost exclusively on physical simulators. These experimental tests are expensive and time consuming. During the past few years a strong increase has been observed in the use of computer simulations due to the fast developments in computer hardware and simulation software. Based on this idea, an effort to develop a computational simulation system to model human dynamic motion for EVA is initiated. This study focuses on the simulation of an astronaut moving the orbital replaceable units into the worksites or removing them from the worksites. Our physics-based methodology helps fill the gap in quantitative analysis of astronaut EVA by providing a multisegment human arm model. Simulation work described in the study improves on the realism of previous efforts, incorporating joint stops to account for the physiological limits of range of motion. To demonstrate the utility of this approach human arm model is simulated virtually using ADAMS/LifeMOD® software. Kinematic mechanism for the astronaut’s task is studied from joint angles and torques. Simulation results obtained is validated with numerical simulation based on the principles of Newton-Euler method. Torques determined using mathematical model are compared among the subjects to know the grace and consistency of the task performed. We conclude that due to uncertain nature of exploration-class EVA, a virtual model developed using multibody dynamics approach offers significant advantages over traditional human modeling approaches.
Abstract: This paper shows in detail the mathematical model of
direct and inverse kinematics for a robot manipulator (welding type)
with four degrees of freedom. Using the D-H parameters, screw
theory, numerical, geometric and interpolation methods, the
theoretical and practical values of the position of robot were
determined using an optimized algorithm for inverse kinematics
obtaining the values of the particular joints in order to determine the
virtual paths in a relatively short time.
Abstract: Robots are booming as an essential substituent in the field of inspection. In hazardous environments like nuclear waste disposal, robots are really a necessitate one. In a view to meet such demands, this paper presents the seven degree of freedom articulated inspection robot. To design such a robot the kinematic analysis of seven Degree of freedom robot which can inspect the hazardous nuclear waste storage tanks is done. The effective utilization of universal joints for arms and screw jack mechanisms at the base gives the higher order of degree of freedom to the newly designed robot. The analytical method of deriving the manipulator forward as well as inverse kinematics is explained elaborately using the Denavit-Hartenberg Approach for the purpose of calculating the robot joints, links and end-effector parameters. The comparison of the geometric and the analytical approach is stated. The self-developed kinematic model gives the accurate positions of the end effector. The Graphical User Interface (GUI) is developed in Visual Basic language for the manipulation of kinematic results easily. This software gives the expected position of the end-effector accurately at short time compared to manual manipulations.
Abstract: This paper describes the design concepts and
implementation of a 5-Joint mechanical arm for a rescue robot named
CEO Mission II. The multi-joint arm is a five degree of freedom
mechanical arm with a four bar linkage, which can be stretched to
125 cm. long. It is controlled by a teleoperator via the user-friendly
control and monitoring GUI program. With Inverse Kinematics
principle, we developed the method to control the servo angles of all
arm joints to get the desired tip position. By clicking the determined
tip position or dragging the tip of the mechanical arm on the
computer screen to the desired target point, the robot will compute
and move its multi-joint arm to the pose as seen on the GUI screen.
The angles of each joint are calculated and sent to all joint servos
simultaneously in order to move the mechanical arm to the desired
pose at once. The operator can also use a joystick to control the
movement of this mechanical arm and the locomotion of the robot.
Many sensors are installed at the tip of this mechanical arm for
surveillance from the high level and getting the vital signs of victims
easier and faster in the urban search and rescue tasks. It works very
effectively and easy to control. This mechanical arm and its software
were developed as a part of the CEO Mission II Rescue Robot that
won the First Runner Up award and the Best Technique award from
the Thailand Rescue Robot Championship 2006. It is a low cost,
simple, but functioning 5-Jiont mechanical arm which is built from
scratch, and controlled via wireless LAN 802.11b/g. This 5-Jiont
mechanical arm hardware concept and its software can also be used
as the basic mechatronics to many real applications.
Abstract: Robot manipulators are highly coupled nonlinear
systems, therefore real system and mathematical model of dynamics
used for control system design are not same. Hence, fine-tuning of
controller is always needed. For better tuning fast simulation speed
is desired. Since, Matlab incorporates LAPACK to increase the speed
and complexity of matrix computation, dynamics, forward and
inverse kinematics of PUMA 560 is modeled on Matlab/Simulink in
such a way that all operations are matrix based which give very less
simulation time. This paper compares PID parameter tuning using
Genetic Algorithm, Simulated Annealing, Generalized Pattern Search
(GPS) and Hybrid Search techniques. Controller performances for all
these methods are compared in terms of joint space ITSE and
cartesian space ISE for tracking circular and butterfly trajectories.
Disturbance signal is added to check robustness of controller. GAGPS
hybrid search technique is showing best results for tuning PID
controller parameters in terms of ITSE and robustness.
Abstract: High redundancy and strong uncertainty are two main characteristics for underwater robotic manipulators with unlimited workspace and mobility, but they also make the motion planning and control difficult and complex. In order to setup the groundwork for the research on control schemes, the mathematical representation is built by using the Denavit-Hartenberg (D-H) method [9]&[12]; in addition to the geometry of the manipulator which was studied for establishing the direct and inverse kinematics. Then, the dynamic model is developed and used by employing the Lagrange theorem. Furthermore, derivation and computer simulation is accomplished using the MATLAB environment. The result obtained is compared with mechanical system dynamics analysis software, ADAMS. In addition, the creation of intelligent artificial skin using Interlink Force Sensing ResistorTM technology is presented as groundwork for future work
Abstract: In this paper, the bio-mechanical analysis of human joints is carried out and the study is extended to the robot manipulator. This study will first focus on the kinematics of human arm which include the movement of each joint in shoulder, wrist, elbow and finger complexes. Those analyses are then extended to the design of a human robot manipulator. A simulator is built for Direct Kinematics and Inverse Kinematics of human arm. In the simulation of Direct Kinematics, the human joint angles can be inserted, while the position and orientation of each finger tips (end-effector) are shown. Inverse Kinematics does the reverse of the Direct Kinematics. Based on previous materials obtained from kinematics analysis, the human manipulator joints can be designed to follow prescribed position trajectories.
Abstract: The kinematics of manipulators is a central problem in the automatic control of robot manipulators. Theoretical background for the analysis of the 5 Dof Lynx-6 educational Robot Arm kinematics is presented in this paper. The kinematics problem is defined as the transformation from the Cartesian space to the joint space and vice versa. The Denavit-Harbenterg (D-H) model of representation is used to model robot links and joints in this study. Both forward and inverse kinematics solutions for this educational manipulator are presented, An effective method is suggested to decrease multiple solutions in inverse kinematics. A visual software package, named MSG, is also developed for testing Motional Characteristics of the Lynx-6 Robot arm. The kinematics solutions of the software package were found to be identical with the robot arm-s physical motional behaviors.
Abstract: This paper presents an iterative algorithm to find a
inverse kinematic solution of 5-DOF robot. The algorithm is to
minimize the iteration number. Since the 5-DOF robot cannot give full
orientation of tool. Only z-direction of tool is satisfied while rotation
of tool is determined by kinematic constraint. This work therefore
described how to specify the tool direction and let the tool rotation free.
The simulation results show that this algorithm effectively worked.
Using the proposed iteration algorithm, error due to inverse kinematics
converged to zero rapidly in 5 iterations. This algorithm was applied in
real welding robot and verified through various practical works.
Abstract: The purpose of this study is to find natural gait of
biped robot such as human being by analyzing the COG (Center Of
Gravity) trajectory of human being's gait. It is discovered that human
beings gait naturally maintain the stability and use the minimum
energy. This paper intends to find the natural gait pattern of biped
robot using the minimum energy as well as maintaining the stability by
analyzing the human's gait pattern that is measured from gait image on
the sagittal plane and COG trajectory on the frontal plane. It is not
possible to apply the torques of human's articulation to those of biped
robot's because they have different degrees of freedom. Nonetheless,
human and 5-link biped robots are similar in kinematics. For this, we
generate gait pattern of the 5-link biped robot by using the GA
algorithm of adaptation gait pattern which utilize the human's ZMP
(Zero Moment Point) and torque of all articulation that are measured
from human's gait pattern. The algorithm proposed creates biped
robot's fluent gait pattern as that of human being's and to minimize
energy consumption because the gait pattern of the 5-link biped robot
model is modeled after consideration about the torque of human's each
articulation on the sagittal plane and ZMP trajectory on the frontal
plane. This paper demonstrate that the algorithm proposed is superior
by evaluating 2 kinds of the 5-link biped robot applied to each gait
patterns generated both in the general way using inverse kinematics
and in the special way in which by considering visuality and
efficiency.
Abstract: In this paper the direct kinematic model of a multiple
applications three degrees of freedom industrial manipulator, was
developed using the homogeneous transformation matrices and the
Denavit - Hartenberg parameters, likewise the inverse kinematic
model was developed using the same method, verifying that in the
workload border the inverse kinematic presents considerable errors,
therefore a genetic algorithm was implemented to optimize the model
improving greatly the efficiency of the model.
Abstract: In this paper, we have proposed a low cost optimized solution for the movement of a three-arm manipulator using Genetic Algorithm (GA) and Analytical Hierarchy Process (AHP). A scheme is given for optimizing the movement of robotic arm with the help of Genetic Algorithm so that the minimum energy consumption criteria can be achieved. As compared to Direct Kinematics, Inverse Kinematics evolved two solutions out of which the best-fit solution is selected with the help of Genetic Algorithm and is kept in search space for future use. The Inverse Kinematics, Fitness Value evaluation and Binary Encoding like tasks are simulated and tested. Although, three factors viz. Movement, Friction and Least Settling Time (or Min. Vibration) are used for finding the Fitness Function / Fitness Values, however some more factors can also be considered.
Abstract: Automatic control of the robotic manipulator involves
study of kinematics and dynamics as a major issue. This paper
involves the forward and inverse kinematics of 2-DOF robotic
manipulator with revolute joints. In this study the Denavit-
Hartenberg (D-H) model is used to model robot links and joints. Also
forward and inverse kinematics solution has been achieved using
Artificial Neural Networks for 2-DOF robotic manipulator. It shows
that by using artificial neural network the solution we get is faster,
acceptable and has zero error.
Abstract: In order to improve control performance and eliminate steady, a coupling compensation for 6-DOF parallel robot is presented. Taking dynamic load Tank Simulator as the research object, this paper analyzes the coupling of 6-DOC parallel robot considering the degree of freedom of the 6-DOF parallel manipulator. The coupling angle and coupling velocity are derived based on inverse kinematics model. It uses the mechanism-model combined method which takes practical moving track that considering the performance of motion controller and motor as its input to make the study. Experimental results show that the coupling compensation improves motion stability as well as accuracy. Besides, it decreases the dither amplitude of dynamic load Tank Simulator.
Abstract: In this paper, we present optimal control for
movement and trajectory planning for four degrees-of-freedom robot
using Fuzzy Logic (FL) and Genetic Algorithms (GAs). We have
evaluated using Fuzzy Logic (FL) and Genetic Algorithms (GAs)
for four degree-of-freedom (4 DOF) robotics arm, Uncertainties like;
Movement, Friction and Settling Time in robotic arm movement
have been compensated using Fuzzy logic and Genetic Algorithms.
The development of a fuzzy genetic optimization algorithm is
presented and discussed. The result are compared only GA and
Fuzzy GA. This paper describes genetic algorithms, which is
designed to optimize robot movement and trajectory. Though the
model represents is a general model for redundant structures and
could represent any n-link structures. The result is a complete
trajectory planning with Fuzzy logic and Genetic algorithms
demonstrating the flexibility of this technique of artificial
intelligence.