Design of a 4-DOF Robot Manipulator with Optimized Algorithm for Inverse Kinematics

This paper shows in detail the mathematical model of direct and inverse kinematics for a robot manipulator (welding type) with four degrees of freedom. Using the D-H parameters, screw theory, numerical, geometric and interpolation methods, the theoretical and practical values of the position of robot were determined using an optimized algorithm for inverse kinematics obtaining the values of the particular joints in order to determine the virtual paths in a relatively short time.




References:
[1] Bin Niu, Hui Zhang, “Model based control of industrial robot and
implementation of its gain scheduling robust control”, IEEE
International Conference on Robotics and Biomimetics (ROBIO), Karon
Beach, Phuket, 2011, pp. 2156-2162.
[2] M. Pala, D. Lorencik, P. Sincak,“Towards the robotic teleoperation
systems in education”, IEEE 10th International Conference on Emerging
eLearning Technologies & Applications (ICETA), StaraLesna, 2012,
pp.241-246.
[3] D. Meike, M. Pellicciari, G. Berselli, “Energy Efficient Use of
Multirobot Production Lines in the Automotive Industry: Detailed
System Modeling and Optimization”, IEEE Transactions on Automation
Science and Engineering, 2014, 11(3), pp.798-809
[4] A. G. Banerjee, S. K. Gupta, “Research in Automated Planning and
Control for Micromanipulation”. IEEE Transactions on Automation
Science and Engineering, 2013. 10(3). pp. 485-495.
[5] K. Ravichandran, “Driving simulator for tracked vehicles using Stewart
platform manipulator”, International Conference on Emerging Trends in
Robotics and Communication Technologies (INTERACT), 2010,
pp.245-249.
[6] H. Moradi, K. Kawamura, E. Prassler, G. Muscato, P. Fiorini, T. Sato,
R. Rusu, “Service robotics”. IEEE Robotics & Automation Magazine,
2013, 20(3), pp.22-24.
[7] A. Olaru. “The optimizing space trajectory by using the inverse
kinematics, direct dynamics and intelligent damper controlling with
proper neural network”, International Conference on Advanced
Mechatronic Systems (ICAMechS), Tokyo, 2012, pp.504-509.
[8] M. Rolf, J. J. Steil, M. Gienger, “Goal Babbling Permits Direct Learning
of Inverse Kinematics”, IEEE Transactions on Autonomous Mental
Development, 2010, 2(3), pp.216-229.
[9] K.Ofjall, M. Felsberg, “Rapid explorative direct inverse kinematics
learning of relevant locations for active vision”, IEEE Workshop on
Robot Vision (WORV), Clearwater Beach, FL 2013, pp.14-19
[10] L.G. Herrera-Bendezu. E. Mu, T. Cain, James, “Symbolic computation
of robot manipulator kinematics”, IEEE International Conference on 998.
[11] N. A. Aspragathos, J. K. Dimitros, “A comparative study of three
methods for robot kinematics”, IEEE Transactions on Systems, Man,
and Cybernetics, Part B: Cybernetics, 1998, 28(2), pp.135-145
[12] E. Sariyildiz, H. Temeltas, “A comparison study of three screw theory
based kinematic solution methods for the industrial robot manipulators”,
International Conference on Mechatronics and Automation (ICMA),
2011, pp.52-57
[13] John J. Craig, Introduction to Robotics, Pearson Prentice Hall, 2006.
[14] Atique, M. M. U., Ahad, M. A. R., “Inverse Kinematics solution for a
3DOF robotic structure using Denavit-Hartenberg Convention”,
International Conference on Informatics, Electronics & Vision (ICIEV),
2014, pp.1-5.
[15] Jian Fang, Tao Mei, Jian Chen, Jianghai Zhao. “An iteration method for
inverse kinematics of redundancy robot”. IEEE International Conference
on Mechatronics and Automation (ICMA), Tianjin, 2014, pp.1005-1010.
[16] Jing Huang, Xianlun Wang, Dongsheng Liu, Yuxia Cui, “A New
Method for Solving Inverse Kinematics of an Industrial Robot”,
International Conference on Computer Science and Electronics
Engineering (ICCSEE), Hangzhou, 2012, pp. 53-56.
[17] T. Takahashi, A. Kawamura, “The high-speed numerical calculation
method for the on-line inverse kinematics of redundant degree of
freedom manipulators”, Proceedings. 6th International Workshop on
Advanced Motion Control, Nagoya, Japan, 2000, pp. 618-623.
[18] S. Yahya, H. A. F. Mohamed, M. Moghavvemi, S.S Yang,. “A new
geometrical inverse kinematics method for planar hyper redundant
manipulators”, IEEE Innovative Technologies in Intelligent Systems and
Industrial Applications (CITISIA), Monash, 2009, pp.20-22.
[19] H Ananthanarayanan, R. Ordonez, “Real-time Inverse Kinematics of
redundant manipulator using a hybrid (analytical and numerical)
method”, 16th International Conference on Advanced Robotics (ICAR),
Montevideo, 2013, pp.1-6.