Envelope Echo Signal of Metal Sphere in the Fresh Water

An envelope echo signal measurement is proposed in this paper using echo signal observation from the 200 kHz echo sounder receiver. The envelope signal without any object is compared with the envelope signal of the sphere. Two diameter size steel ball (3.1 cm & 2.2 cm) and two diameter size air filled stainless steel ball (4.8 cm & 7.4 cm) used in this experiment. The target was positioned about 0.5 m and 1.0 meter from the transducer face using nylon rope. From the echo observation in time domain, it is obviously shown that echo signal structure is different between the size, distance and type of metal sphere. The amplitude envelope voltage for the bigger sphere is higher compare to the small sphere and it confirm that the bigger sphere have higher target strength compare to the small sphere. Although the structure signal without any object are different compare to the signal from the sphere, the reflected signal from the tank floor increase linearly with the sphere size. We considered this event happened because of the object position approximately to the tank floor.

Reversible, Embedded and Highly Scalable Image Compression System

In this work a new method for low complexity image coding is presented, that permits different settings and great scalability in the generation of the final bit stream. This coding presents a continuous-tone still image compression system that groups loss and lossless compression making use of finite arithmetic reversible transforms. Both transformation in the space of color and wavelet transformation are reversible. The transformed coefficients are coded by means of a coding system in depending on a subdivision into smaller components (CFDS) similar to the bit importance codification. The subcomponents so obtained are reordered by means of a highly configure alignment system depending on the application that makes possible the re-configure of the elements of the image and obtaining different importance levels from which the bit stream will be generated. The subcomponents of each importance level are coded using a variable length entropy coding system (VBLm) that permits the generation of an embedded bit stream. This bit stream supposes itself a bit stream that codes a compressed still image. However, the use of a packing system on the bit stream after the VBLm allows the realization of a final highly scalable bit stream from a basic image level and one or several improvement levels.

A 1.2-ns16×16-Bit Binary Multiplier Using High Speed Compressors

For higher order multiplications, a huge number of adders or compressors are to be used to perform the partial product addition. We have reduced the number of adders by introducing special kind of adders that are capable to add five/six/seven bits per decade. These adders are called compressors. Binary counter property has been merged with the compressor property to develop high order compressors. Uses of these compressors permit the reduction of the vertical critical paths. A 16×16 bit multiplier has been developed using these compressors. These compressors make the multipliers faster as compared to the conventional design that have been used 4-2 compressors and 3-2 compressors.

Dimensioning of Subsynchronous Cascade for Speed Regulation of Two-Motors 6kv Conveyer Drives

One way for optimum loading of overdimensioning conveyers is speed (capacity) decrement, with attention for production capabilities and demands. At conveyers which drives with three phase slip-ring induction motor, technically reasonable solution for conveyer (driving motors) speed regulation is using constant torque subsynchronous cascade with static semiconductor converter and transformer for energy reversion to the power network. In the paper is described mathematical model for parameter calculation of two-motors 6 kV subsynchronous cascade. It is also demonstrated that applying of this cascade gave several good properties, foremost in electrical energy saving, also in improving of other energy indexes, and finally that results in cost reduction of complete electrical motor drive.

Object Detection based Weighted-Center Surround Difference

Intelligent traffic surveillance technology is an issue in the field of traffic data analysis. Therefore, we need the technology to detect moving objects in real-time while there are variations in background and natural light. In this paper, we proposed a Weighted-Center Surround Difference method for object detection in outdoor environments. The proposed system detects objects using the saliency map that is obtained by analyzing the weight of each layers of Gaussian pyramid. In order to validate the effectiveness of our system, we implemented the proposed method using a digital signal processor, TMS320DM6437. Experimental results show that blurred noisy around objects was effectively eliminated and the object detection accuracy is improved.

Energy Efficient Reliable Cooperative Multipath Routing in Wireless Sensor Networks

In this paper, a reliable cooperative multipath routing algorithm is proposed for data forwarding in wireless sensor networks (WSNs). In this algorithm, data packets are forwarded towards the base station (BS) through a number of paths, using a set of relay nodes. In addition, the Rayleigh fading model is used to calculate the evaluation metric of links. Here, the quality of reliability is guaranteed by selecting optimal relay set with which the probability of correct packet reception at the BS will exceed a predefined threshold. Therefore, the proposed scheme ensures reliable packet transmission to the BS. Furthermore, in the proposed algorithm, energy efficiency is achieved by energy balancing (i.e. minimizing the energy consumption of the bottleneck node of the routing path) at the same time. This work also demonstrates that the proposed algorithm outperforms existing algorithms in extending longevity of the network, with respect to the quality of reliability. Given this, the obtained results make possible reliable path selection with minimum energy consumption in real time.

Multi Switched Split Vector Quantization of Narrowband Speech Signals

Vector quantization is a powerful tool for speech coding applications. This paper deals with LPC Coding of speech signals which uses a new technique called Multi Switched Split Vector Quantization (MSSVQ), which is a hybrid of Multi, switched, split vector quantization techniques. The spectral distortion performance, computational complexity, and memory requirements of MSSVQ are compared to split vector quantization (SVQ), multi stage vector quantization(MSVQ) and switched split vector quantization (SSVQ) techniques. It has been proved from results that MSSVQ has better spectral distortion performance, lower computational complexity and lower memory requirements when compared to all the above mentioned product code vector quantization techniques. Computational complexity is measured in floating point operations (flops), and memory requirements is measured in (floats).

Electrical Performance of a Solid Oxide Fuel Cell Unit with Non-Uniform Inlet Flow and High Fuel Utilization

This study investigates the electrical performance of a planar solid oxide fuel cell unit with cross-flow configuration when the fuel utilization gets higher and the fuel inlet flow are non-uniform. A software package in this study solves two-dimensional, simultaneous, partial differential equations of mass, energy, and electro-chemistry, without considering stack direction variation. The results show that the fuel utilization increases with a decrease in the molar flow rate, and the average current density decreases when the molar flow rate drops. In addition, non-uniform Pattern A will induce more severe happening of non-reaction area in the corner of the fuel exit and the air inlet. This non-reaction area deteriorates the average current density and then deteriorates the electrical performance to –7%.

A Forward Automatic Censored Cell-Averaging Detector for Multiple Target Situations in Log-Normal Clutter

A challenging problem in radar signal processing is to achieve reliable target detection in the presence of interferences. In this paper, we propose a novel algorithm for automatic censoring of radar interfering targets in log-normal clutter. The proposed algorithm, termed the forward automatic censored cell averaging detector (F-ACCAD), consists of two steps: removing the corrupted reference cells (censoring) and the actual detection. Both steps are performed dynamically by using a suitable set of ranked cells to estimate the unknown background level and set the adaptive thresholds accordingly. The F-ACCAD algorithm does not require any prior information about the clutter parameters nor does it require the number of interfering targets. The effectiveness of the F-ACCAD algorithm is assessed by computing, using Monte Carlo simulations, the probability of censoring and the probability of detection in different background environments.

Low Complexity Multi Mode Interleaver Core for WiMAX with Support for Convolutional Interleaving

A hardware efficient, multi mode, re-configurable architecture of interleaver/de-interleaver for multiple standards, like DVB, WiMAX and WLAN is presented. The interleavers consume a large part of silicon area when implemented by using conventional methods as they use memories to store permutation patterns. In addition, different types of interleavers in different standards cannot share the hardware due to different construction methodologies. The novelty of the work presented in this paper is threefold: 1) Mapping of vital types of interleavers including convolutional interleaver onto a single architecture with flexibility to change interleaver size; 2) Hardware complexity for channel interleaving in WiMAX is reduced by using 2-D realization of the interleaver functions; and 3) Silicon cost overheads reduced by avoiding the use of small memories. The proposed architecture consumes 0.18mm2 silicon area for 0.12μm process and can operate at a frequency of 140 MHz. The reduced complexity helps in minimizing the memory utilization, and at the same time provides strong support to on-the-fly computation of permutation patterns.

Power System Contingency Analysis Using Multiagent Systems

The demand of the energy management systems (EMS) set forth by modern power systems requires fast energy management systems. Contingency analysis is among the functions in EMS which is time consuming. In order to handle this limitation, this paper introduces agent based technology in the contingency analysis. The main function of agents is to speed up the performance. Negotiations process in decision making is explained and the issue set forth is the minimization of the operating costs. The IEEE 14 bus system and its line outage have been used in the research and simulation results are presented.

Complementary Energy Path Adiabatic Logic based Full Adder Circuit

In this paper, we present the design and experimental evaluation of complementary energy path adiabatic logic (CEPAL) based 1 bit full adder circuit. A simulative investigation on the proposed full adder has been done using VIRTUOSO SPECTRE simulator of cadence in 0.18μm UMC technology and its performance has been compared with the conventional CMOS full adder circuit. The CEPAL based full adder circuit exhibits the energy saving of 70% to the conventional CMOS full adder circuit, at 100 MHz frequency and 1.8V operating voltage.

Increasing Convergence Rate of a Fractionally-Spaced Channel Equalizer

In this paper a technique for increasing the convergence rate of fractionally spaced channel equalizer is proposed. Instead of symbol-spaced updating of the equalizer filter, a mechanism has been devised to update the filter at a higher rate. This ensures convergence of the equalizer filter at a higher rate and therefore less time-consuming. The proposed technique has been simulated and tested for two-ray modeled channels with various delay spreads. These channels include minimum-phase and nonminimum- phase channels. Simulation results suggest that that proposed technique outperforms the conventional technique of symbol-spaced updating of equalizer filter.

Data Acquisition from Cell Phone using Logical Approach

Cell phone forensics to acquire and analyze data in the cellular phone is nowadays being used in a national investigation organization and a private company. In order to collect cellular phone flash memory data, we have two methods. Firstly, it is a logical method which acquires files and directories from the file system of the cell phone flash memory. Secondly, we can get all data from bit-by-bit copy of entire physical memory using a low level access method. In this paper, we describe a forensic tool to acquire cell phone flash memory data using a logical level approach. By our tool, we can get EFS file system and peek memory data with an arbitrary region from Korea CDMA cell phone.

Energy-Efficient Electrical Power Distribution with Multi-Agent Control at Parallel DC/DC Converters

Consumer electronics are pervasive. It is impossible to imagine a household or office without DVD players, digital cameras, printers, mobile phones, shavers, electrical toothbrushes, etc. All these devices operate at different voltage levels ranging from 1.8 to 20 VDC, in the absence of universal standards. The voltages available are however usually 120/230 VAC at 50/60 Hz. This situation makes an individual electrical energy conversion system necessary for each device. Such converters usually involve several conversion stages and often operate with excessive losses and poor reliability. The aim of the project presented in this paper is to design and implement a multi-channel DC/DC converter system, customizing the output voltage and current ratings according to the requirements of the load. Distributed, multi-agent techniques will be applied for the control of the DC/DC converters.

Sensitivity Analysis for Direction of Arrival Estimation Using Capon and Music Algorithms in Mobile Radio Environment

An array antenna system with innovative signal processing can improve the resolution of a source direction of arrival (DoA) estimation. High resolution techniques take the advantage of array antenna structures to better process the incoming waves. They also have the capability to identify the direction of multiple targets. This paper investigates performance of the DOA estimation algorithm namely; Capon and MUSIC on the uniform linear array (ULA). The simulation results show that in Capon and MUSIC algorithm the resolution of the DOA techniques improves as number of snapshots, number of array elements, signal-to-noise ratio and separation angle between the two sources θ increases.

Peakwise Smoothing of Data Models using Wavelets

Smoothing or filtering of data is first preprocessing step for noise suppression in many applications involving data analysis. Moving average is the most popular method of smoothing the data, generalization of this led to the development of Savitzky-Golay filter. Many window smoothing methods were developed by convolving the data with different window functions for different applications; most widely used window functions are Gaussian or Kaiser. Function approximation of the data by polynomial regression or Fourier expansion or wavelet expansion also gives a smoothed data. Wavelets also smooth the data to great extent by thresholding the wavelet coefficients. Almost all smoothing methods destroys the peaks and flatten them when the support of the window is increased. In certain applications it is desirable to retain peaks while smoothing the data as much as possible. In this paper we present a methodology called as peak-wise smoothing that will smooth the data to any desired level without losing the major peak features.

Optimal Design of UPFC Based Damping Controller Using Iteration PSO

This paper presents a novel approach for tuning unified power flow controller (UPFC) based damping controller in order to enhance the damping of power system low frequency oscillations. The design problem of damping controller is formulated as an optimization problem according to the eigenvalue-based objective function which is solved using iteration particle swarm optimization (IPSO). The effectiveness of the proposed controller is demonstrated through eigenvalue analysis and nonlinear time-domain simulation studies under a wide range of loading conditions. The simulation study shows that the designed controller by IPSO performs better than CPSO in finding the solution. Moreover, the system performance analysis under different operating conditions show that the δE based controller is superior to the mB based controller.

Clustering based Voltage Control Areas for Localized Reactive Power Management in Deregulated Power System

In this paper, a new K-means clustering based approach for identification of voltage control areas is developed. Voltage control areas are important for efficient reactive power management in power systems operating under deregulated environment. Although, voltage control areas are formed using conventional hierarchical clustering based method, but the present paper investigate the capability of K-means clustering for the purpose of forming voltage control areas. The proposed method is tested and compared for IEEE 14 bus and IEEE 30 bus systems. The results show that this K-means based method is competing with conventional hierarchical approach

Counterpropagation Neural Network for Solving Power Flow Problem

Power flow (PF) study, which is performed to determine the power system static states (voltage magnitudes and voltage angles) at each bus to find the steady state operating condition of a system, is very important and is the most frequently carried out study by power utilities for power system planning, operation and control. In this paper, a counterpropagation neural network (CPNN) is proposed to solve power flow problem under different loading/contingency conditions for computing bus voltage magnitudes and angles of the power system. The counterpropagation network uses a different mapping strategy namely counterpropagation and provides a practical approach for implementing a pattern mapping task, since learning is fast in this network. The composition of the input variables for the proposed neural network has been selected to emulate the solution process of a conventional power flow program. The effectiveness of the proposed CPNN based approach for solving power flow is demonstrated by computation of bus voltage magnitudes and voltage angles for different loading conditions and single line-outage contingencies in IEEE 14-bus system.