Application of Particle Swarm Optimization Technique for an Optical Fiber Alignment System

In this paper, a new alignment method based on the particle swarm optimization (PSO) technique is presented. The PSO algorithm is used for locating the optimal coupling position with the highest optical power with three-degrees of freedom alignment. This algorithm gives an interesting results without a need to go thru the complex mathematical modeling of the alignment system. The proposed algorithm is validated considering practical tests considering the alignment of two Single Mode Fibers (SMF) and the alignment of SMF and PCF fibers.

Expectation about Teamwork to Build a Knowledge Management System

Gurus of the Classical Management School (like Taylor, Fayol and Ford) had an opinion that work must be delegated to the individual and the individual has to be instructed, his work assessed and paid based on individual performance. The theories of the Human Relations School have changed this mentality regarding the concept of groups. They came to the conclusion that the influence of groups greatly affects the behaviour and performance of its members. Group theories today are characterized by problem-solving teams and self-managing groups authorized to make decisions and execute; professional communities also play an important role during the operation of knowledge management systems. In this theoretical research we try to find answers to a question: what kind of characteristics (professional competencies, personal features, etc.) a successful team needs to manage a change to operate a knowledge management system step by step.

Antibacterial Effect of Silver Nanoparticles on Multi Drug Resistant Pseudomonas Aeruginosa

Multidrug resistant organisms have been taunting the medical world for the last few decades. Even with new antibiotics developed, resistant strains have emerged soon after. With the advancement of nanotechnology, we investigated colloidal silver nanoparticles for its antimicrobial activity against Pseudomonas aeruginosa. This organism is a multidrug resistant which contributes to the high morbidity and mortality in immunocompromised patients. Five multidrug resistant strains were used in this study. The antimicrobial effect was studied using the disc diffusion and broth dilution techniques. An inhibition zone of 11 mm was observed with 10 μg dose of the nanoparticles. The nanoparticles exhibited MIC of 50 μg/ml when added at the lag phase and the subinhibitory concentration was measured as 100 μg/ml. The MIC50 value showed to be 15 μg/ml. This study suggests that silver nanoparticles can be further developed as an antimicrobial agent, hence decreasing the burden of the multidrug resistance phenomena.

Heat and Mass Transfer in a Solar Dryer with Biomass Backup Burner

Majority of pepper farmers in Malaysia are using the open-sun method for drying the pepper berries. This method is time consuming and exposed the berries to rain and contamination. A maintenance-friendly and properly enclosed dryer is therefore desired. A dryer design with a solar collector and a chimney was studied and adapted to suit the needs of small-scale pepper farmers in Malaysia. The dryer will provide an environment with an optimum operating temperature meant for drying pepper berries. The dryer model was evaluated by using commercially available computational fluid dynamic (CFD) software in order to understand the heat and mass transfer inside the dryer. Natural convection was the only mode of heat transportation considered in this study as in accordance to the idea of having a simple and maintenance-friendly design. To accommodate the effect of low buoyancy found in natural convection driers, a biomass burner was integrated into the solar dryer design.

Software Model for a Computer Based Training for an HVDC Control Desk Simulator

With major technological advances and to reduce the cost of training apprentices for real-time critical systems, it was necessary the development of Intelligent Tutoring Systems for training apprentices in these systems. These systems, in general, have interactive features so that the learning is actually more efficient, making the learner more familiar with the mechanism in question. In the home stage of learning, tests are performed to obtain the student's income, a measure on their use. The aim of this paper is to present a framework to model an Intelligent Tutoring Systems using the UML language. The various steps of the analysis are considered the diagrams required to build a general model, whose purpose is to present the different perspectives of its development.

Modeling of Session Initiation Protocol Invite Transaction using Colored Petri Nets

Wireless mobile communications have experienced the phenomenal growth through last decades. The advances in wireless mobile technologies have brought about a demand for high quality multimedia applications and services. For such applications and services to work, signaling protocol is required for establishing, maintaining and tearing down multimedia sessions. The Session Initiation Protocol (SIP) is an application layer signaling protocols, based on request/response transaction model. This paper considers SIP INVITE transaction over an unreliable medium, since it has been recently modified in Request for Comments (RFC) 6026. In order to help in assuring that the functional correctness of this modification is achieved, the SIP INVITE transaction is modeled and analyzed using Colored Petri Nets (CPNs). Based on the model analysis, it is concluded that the SIP INVITE transaction is free of livelocks and dead codes, and in the same time it has both desirable and undesirable deadlocks. Therefore, SIP INVITE transaction should be subjected for additional updates in order to eliminate undesirable deadlocks. In order to reduce the cost of implementation and maintenance of SIP, additional remodeling of the SIP INVITE transaction is recommended.

Wind-tunnel Measurement of the Drag-reducing Effect of Compliant Coating

A specially designed flat plate was mounted vertically over the axial line in the wind tunnel of the Aerospace Department of the Pusan National University. The plate is 2 m long, 0.8 m high and 8 cm thick. The measurements were performed in velocity range from 15 to 60 m/s. A sand paper turbulizer was placed close to the plate nose to provide fully developed turbulent boundary layer over the most part of the plate. Strain balances were mounted in the trailing part of the plate to measure the skin friction drag over removable insertions of 0.55×0.25m2 size. A set of the insertions was designed and manufactured: 3mm thick polished metal surface and three compliant surfaces. The compliant surfaces were manufactured of a silicone rubber Silastic® S2 (Dow Corning company). To modify the viscoelastic properties of the rubber, its composition was varied: 90% of the rubber + 10% catalyst (standard), 92.5% + 7.5% (weak), 85% + 15% (strong). Modulus of elasticity and the loss tangent were measured accurately for these materials in the frequency range from 40 Hz to 3 KHz using the unique proposed technique.

Discontinuous Feedback Linearization of an Electrically Driven Fast Robot Manipulator

A multivariable discontinuous feedback linearization approach is proposed to position control of an electrically driven fast robot manipulator. A desired performance is achieved by selecting a useful controller and suitable sampling rate and considering saturation for actuators. There is a high flexibility to apply the proposed control approach on different electrically driven manipulators. The control approach can guarantee the stability and satisfactory tracking performance. A PUMA 560 robot driven by geared permanent magnet dc motors is simulated. The simulation results show a desired performance for control system under technical specifications.

Consideration a Novel Manner for Data Sending Quality in Heterogeneous Radio Networks

In real-time networks a large number of application programs are relying on video data and heterogeneous data transmission techniques. The aim of this research is presenting a method for end-to-end vouch quality service in surface applicationlayer for sending video data in comparison form in wireless heterogeneous networks. This method tries to improve the video sending over the wireless heterogeneous networks with used techniques in surface layer, link and application. The offered method is showing a considerable improvement in quality observing by user. In addition to this, other specifications such as shortage of data load that had require to resending and limited the relation period length to require time for second data sending, help to be used the offered method in the wireless devices that have a limited energy. The presented method and the achieved improvement is simulated and presented in the NS-2 software.

Specification of Agent Explicit Knowledge in Cryptographic Protocols

Cryptographic protocols are widely used in various applications to provide secure communications. They are usually represented as communicating agents that send and receive messages. These agents use their knowledge to exchange information and communicate with other agents involved in the protocol. An agent knowledge can be partitioned into explicit knowledge and procedural knowledge. The explicit knowledge refers to the set of information which is either proper to the agent or directly obtained from other agents through communication. The procedural knowledge relates to the set of mechanisms used to get new information from what is already available to the agent. In this paper, we propose a mathematical framework which specifies the explicit knowledge of an agent involved in a cryptographic protocol. Modelling this knowledge is crucial for the specification, analysis, and implementation of cryptographic protocols. We also, report on a prototype tool that allows the representation and the manipulation of the explicit knowledge.

Stress Intensity Factors for Plates with Collinear and Non-Aligned Straight Cracks

Multi-site damage (MSD) has been a challenge to aircraft, civil and power plant structures. In real life components are subjected to cracking at many vulnerable locations such as the bolt holes. However, we do not consider for the presence of multiple cracks. Unlike components with a single crack, these components are difficult to predict. When two cracks approach one another, their stress fields influence each other and produce enhancing or shielding effect depending on the position of the cracks. In the present study, numerical studies on fracture analysis have been conducted by using the developed code based on the modified virtual crack closure integral (MVCCI) technique and finite element analysis (FEA) software ABAQUS for computing SIF of plates with multiple cracks. Various parametric studies have been carried out and the results have been compared with literature where ever available and also with the solution, obtained by using ABAQUS. By conducting extensive numerical studies expressions for SIF have been obtained for collinear cracks and non-aligned cracks.

New Ways for Designing External Fixators Applied in Treatment of Open and Unstable Fractures

This paper deals with a new way for designing external fixators applied in traumatology and orthopaedics. These fixators can be applied in the treatment of open and unstable fractures or for lengthening human or animal bones etc. The new design is based on the development of Ilizarov and other techniques (i.e. shape and weight optimalization based on composite materials, application of smart materials, nanotechnology, low x-ray absorption, antibacterial protection, patient's comfort, reduction in the duration of the surgical treatment, and cost).

The Effect of a Free -Trade Agreement upon Agricultural Imports

A free-trade agreement is found to increase Thailand-s agricultural imports from New Zealand, despite the short span of time for which the agreement has been operational. The finding is described by autoregressive estimates that correct for possible unit roots in the data. The agreement-s effect upon imports is also estimated while considering an error-correction model of imports against gross domestic product.

Automated Separation of Organic Liquids through Their Boiling Points

This paper discuss the separation of the miscible liquids by means of fractional distillation. For complete separation of liquids, the process of heating, condensation, separation and storage is done automatically to achieve the objective. PIC micro-controller has been used to control each and every process of the work. The controller also controls the storage process by activating and deactivating the conveyors. The liquids are heated which on reaching their respective boiling points evaporate and enter the condensation chamber where they convert into liquid. The liquids are then directed to their respective tanks by means of stepper motor which moves in three directions, each movement into different tank. The tank on filling sends the signal to controller which then opens the solenoid valves. The tank is emptied into the beakers below the nozzle. As the beaker filled, the nozzle closes and the conveyors come into operation. The filled beaker is replaced by an empty beaker from behind. The work can be used in oil industries, chemical industries and paint industries.

On The Analysis of a Compound Neural Network for Detecting Atrio Ventricular Heart Block (AVB) in an ECG Signal

Heart failure is the most common reason of death nowadays, but if the medical help is given directly, the patient-s life may be saved in many cases. Numerous heart diseases can be detected by means of analyzing electrocardiograms (ECG). Artificial Neural Networks (ANN) are computer-based expert systems that have proved to be useful in pattern recognition tasks. ANN can be used in different phases of the decision-making process, from classification to diagnostic procedures. This work concentrates on a review followed by a novel method. The purpose of the review is to assess the evidence of healthcare benefits involving the application of artificial neural networks to the clinical functions of diagnosis, prognosis and survival analysis, in ECG signals. The developed method is based on a compound neural network (CNN), to classify ECGs as normal or carrying an AtrioVentricular heart Block (AVB). This method uses three different feed forward multilayer neural networks. A single output unit encodes the probability of AVB occurrences. A value between 0 and 0.1 is the desired output for a normal ECG; a value between 0.1 and 1 would infer an occurrence of an AVB. The results show that this compound network has a good performance in detecting AVBs, with a sensitivity of 90.7% and a specificity of 86.05%. The accuracy value is 87.9%.

Joint Microstatistic Multiuser Detection and Cancellation of Nonlinear Distortion Effects for the Uplink of MC-CDMA Systems Using Golay Codes

The study in this paper underlines the importance of correct joint selection of the spreading codes for uplink of multicarrier code division multiple access (MC-CDMA) at the transmitter side and detector at the receiver side in the presence of nonlinear distortion due to high power amplifier (HPA). The bit error rate (BER) of system for different spreading sequences (Walsh code, Gold code, orthogonal Gold code, Golay code and Zadoff-Chu code) and different kinds of receivers (minimum mean-square error receiver (MMSE-MUD) and microstatistic multi-user receiver (MSF-MUD)) is compared by means of simulations for MC-CDMA transmission system. Finally, the results of analysis will show, that the application of MSF-MUD in combination with Golay codes can outperform significantly the other tested spreading codes and receivers for all mostly used models of HPA.

An Efficient Approach to Mining Frequent Itemsets on Data Streams

The increasing importance of data stream arising in a wide range of advanced applications has led to the extensive study of mining frequent patterns. Mining data streams poses many new challenges amongst which are the one-scan nature, the unbounded memory requirement and the high arrival rate of data streams. In this paper, we propose a new approach for mining itemsets on data stream. Our approach SFIDS has been developed based on FIDS algorithm. The main attempts were to keep some advantages of the previous approach and resolve some of its drawbacks, and consequently to improve run time and memory consumption. Our approach has the following advantages: using a data structure similar to lattice for keeping frequent itemsets, separating regions from each other with deleting common nodes that results in a decrease in search space, memory consumption and run time; and Finally, considering CPU constraint, with increasing arrival rate of data that result in overloading system, SFIDS automatically detect this situation and discard some of unprocessing data. We guarantee that error of results is bounded to user pre-specified threshold, based on a probability technique. Final results show that SFIDS algorithm could attain about 50% run time improvement than FIDS approach.

Mining Image Features in an Automatic Two-Dimensional Shape Recognition System

The number of features required to represent an image can be very huge. Using all available features to recognize objects can suffer from curse dimensionality. Feature selection and extraction is the pre-processing step of image mining. Main issues in analyzing images is the effective identification of features and another one is extracting them. The mining problem that has been focused is the grouping of features for different shapes. Experiments have been conducted by using shape outline as the features. Shape outline readings are put through normalization and dimensionality reduction process using an eigenvector based method to produce a new set of readings. After this pre-processing step data will be grouped through their shapes. Through statistical analysis, these readings together with peak measures a robust classification and recognition process is achieved. Tests showed that the suggested methods are able to automatically recognize objects through their shapes. Finally, experiments also demonstrate the system invariance to rotation, translation, scale, reflection and to a small degree of distortion.

Towards a Measurement-Based E-Government Portals Maturity Model

The e-government emerging concept transforms the way in which the citizens are dealing with their governments. Thus, the citizens can execute the intended services online anytime and anywhere. This results in great benefits for both the governments (reduces the number of officers) and the citizens (more flexibility and time saving). Therefore, building a maturity model to assess the egovernment portals becomes desired to help in the improvement process of such portals. This paper aims at proposing an egovernment maturity model based on the measurement of the best practices’ presence. The main benefit of such maturity model is to provide a way to rank an e-government portal based on the used best practices, and also giving a set of recommendations to go to the higher stage in the maturity model.

Partial 3D Reconstruction using Evolutionary Algorithms

When reconstructing a scenario, it is necessary to know the structure of the elements present on the scene to have an interpretation. In this work we link 3D scenes reconstruction to evolutionary algorithms through the vision stereo theory. We consider vision stereo as a method that provides the reconstruction of a scene using only a couple of images of the scene and performing some computation. Through several images of a scene, captured from different positions, vision stereo can give us an idea about the threedimensional characteristics of the world. Vision stereo usually requires of two cameras, making an analogy to the mammalian vision system. In this work we employ only a camera, which is translated along a path, capturing images every certain distance. As we can not perform all computations required for an exhaustive reconstruction, we employ an evolutionary algorithm to partially reconstruct the scene in real time. The algorithm employed is the fly algorithm, which employ “flies" to reconstruct the principal characteristics of the world following certain evolutionary rules.