Perception of Farmers and Agricultural Professionals on Changes in Productivity and Water Resources in Ethiopia

In this paper, perceptions of actors on changes in crop productivity, quantity and quality of water, and determinants of their perception are analyzed using descriptive statistics and ordered logit model. Data collected from 297 Ethiopian farmers and 103 agricultural professionals from December 2009 to January 2010 are employed. Results show that the majority of the farmers and professionals recognized decline in water resources, reasoning climate changes and soil erosion as some of the causes. However, there is a variation in views on changes in productivity. The household asset, education level, age and geographical positions are found to affect farmers- perception on changes in crop productivity. But, the study underlines that there is no evidence that farmers- economic status, age, or education level affects recognition of degradation of water resources. Thus, more focus shall be given on providing them different coping mechanisms and alternative resource conserving technologies than educating about the problems.

Particle Swarm Optimization Based Genetic Algorithm for Two-Stage Transportation Supply Chain

Supply chain consists of all stages involved, directly or indirectly, includes all functions involved in fulfilling a customer demand. In two stage transportation supply chain problem, transportation costs are of a significant proportion of final product costs. It is often crucial for successful decisions making approaches in two stage supply chain to explicit account for non-linear transportation costs. In this paper, deterministic demand and finite supply of products was considered. The optimized distribution level and the routing structure from the manufacturing plants to the distribution centres and to the end customers is determined using developed mathematical model and solved by proposed particle swarm optimization based genetic algorithm. Numerical analysis of the case study is carried out to validate the model.

An E-learning System Architecture based on Cloud Computing

The massive proliferation of affordable computers, Internet broadband connectivity and rich education content has created a global phenomenon in which information and communication technology (ICT) is being used to transform education. Therefore, there is a need to redesign the educational system to meet the needs better. The advent of computers with sophisticated software has made it possible to solve many complex problems very fast and at a lower cost. This paper introduces the characteristics of the current E-Learning and then analyses the concept of cloud computing and describes the architecture of cloud computing platform by combining the features of E-Learning. The authors have tried to introduce cloud computing to e-learning, build an e-learning cloud, and make an active research and exploration for it from the following aspects: architecture, construction method and external interface with the model.

Adaptive Square-Rooting Companding Technique for PAPR Reduction in OFDM Systems

This paper addresses the problem of peak-to-average power ratio (PAPR) in orthogonal frequency division multiplexing (OFDM) systems. It also introduces a new PAPR reduction technique based on adaptive square-rooting (SQRT) companding process. The SQRT process of the proposed technique changes the statistical characteristics of the OFDM output signals from Rayleigh distribution to Gaussian-like distribution. This change in statistical distribution results changes of both the peak and average power values of OFDM signals, and consequently reduces significantly the PAPR. For the 64QAM OFDM system using 512 subcarriers, up to 6 dB reduction in PAPR was achieved by square-rooting technique with fixed degradation in bit error rate (BER) equal to 3 dB. However, the PAPR is reduced at the expense of only -15 dB out-ofband spectral shoulder re-growth below the in-band signal level. The proposed adaptive SQRT technique is superior in terms of BER performance than the original, non-adaptive, square-rooting technique when the required reduction in PAPR is no more than 5 dB. Also, it provides fixed amount of PAPR reduction in which it is not available in the original SQRT technique.

Coupled Electromagnetic and Thermal Field Modeling of a Laboratory Busbar System

The paper presents coupled electromagnetic and thermal field analysis of busbar system (of rectangular cross-section geometry) submitted to short circuit conditions. The laboratory model was validated against both analytical solution and experimental observations. The considered problem required the computation of the detailed distribution of the power losses and the heat transfer modes. In this electromagnetic and thermal analysis, different definitions of electric busbar heating were considered and compared. The busbar system is a three phase one and consists of aluminum, painted aluminum and copper busbar. The solution to the coupled field problem is obtained using the finite element method and the QuickField™ program. Experiments have been carried out using two different approaches and compared with computed results.

Areas of Lean Manufacturing for Productivity Improvement in a Manufacturing Unit

Many organisations are nowadays interested to adopt lean manufacturing strategy that would enable them to compete in this competitive globalisation market. In this respect, it is necessary to assess the implementation of lean manufacturing in different organisations so that the important best practices can be identified. This paper describes the development of key areas which will be used to assess the adoption and implementation of lean manufacturing practices. There are some key areas developed to evaluate and reduce the most optimal projects so as to enhance their production efficiency and increase the purpose of the economic benefits of the manufacturing unit. Lean manufacturing is becoming lean enterprise by treating its customers and suppliers as partners. This gives the extra edge in today-s cost and time competitive markets. The organisation is becoming strong in all the conventional competition points. They are Price, Quality and Delivery. Lean enterprise owners can deliver high quality products quickly, with low price.

Investigation of Behavior on the Contact Surface of the Tire and Ground by CFD Simulation

Tread design has evolved over the years to achieve the common tread pattern used in current vehicles. However, to meet safety and comfort requirements, tread design considers more than one design factor. Tread design must consider the grip and drainage, and the manner in which to reduce rolling noise, which is one of the main factors considered by manufacturers. The main objective of this study was the application the computational fluid dynamics (CFD) technique to simulate the contact surface of the tire and ground. The results demonstrated an air-Pumping and large pressure drop effect in the process of contact surface. The results also revealed that the pressure can be used to analyze sound pressure level (SPL).

A Survey: Clustering Ensembles Techniques

The clustering ensembles combine multiple partitions generated by different clustering algorithms into a single clustering solution. Clustering ensembles have emerged as a prominent method for improving robustness, stability and accuracy of unsupervised classification solutions. So far, many contributions have been done to find consensus clustering. One of the major problems in clustering ensembles is the consensus function. In this paper, firstly, we introduce clustering ensembles, representation of multiple partitions, its challenges and present taxonomy of combination algorithms. Secondly, we describe consensus functions in clustering ensembles including Hypergraph partitioning, Voting approach, Mutual information, Co-association based functions and Finite mixture model, and next explain their advantages, disadvantages and computational complexity. Finally, we compare the characteristics of clustering ensembles algorithms such as computational complexity, robustness, simplicity and accuracy on different datasets in previous techniques.

Factors Influence Depositors- Withdrawal Behavior in Islamic Banks: A Theory of Reasoned Action

Unlike its conventional counterpart, Islamic principles forbid Islamic banks to take any interest-related income and thus makes deposits from depositors as an important source of fund for its operational and financing. Consequently, the risk of deposit withdrawal by depositors is an important aspect that should be wellmanaged in Islamic banking. This paper aims to investigate factors that influence depositors- withdrawal behavior in Islamic banks, particularly in Malaysia, using the framework of theory of reasoned action. A total of 368 respondents from Klang valley are involved in the analysis. The paper finds that all the constructs variable i.e. normative beliefs, subjective norms, behavioral beliefs, and attitude towards behavior are perceived to be distinct by the respondents. In addition, the structural equation model is able to verify the structural relationships between subjective norms, attitude towards behavior and behavioral intention. Subjective norms gives more influence to depositors- decision on deposit withdrawal compared to attitude towards behavior.

Performance Analysis of Learning Automata-Based Routing Algorithms in Sparse Graphs

A number of routing algorithms based on learning automata technique have been proposed for communication networks. How ever, there has been little work on the effects of variation of graph scarcity on the performance of these algorithms. In this paper, a comprehensive study is launched to investigate the performance of LASPA, the first learning automata based solution to the dynamic shortest path routing, across different graph structures with varying scarcities. The sensitivity of three main performance parameters of the algorithm, being average number of processed nodes, scanned edges and average time per update, to variation in graph scarcity is reported. Simulation results indicate that the LASPA algorithm can adapt well to the scarcity variation in graph structure and gives much better outputs than the existing dynamic and fixed algorithms in terms of performance criteria.

Investigation of Water Deficit Stress on Agronomical Traits of Soybean Cultivars in Temperate Climate

In order to investigate water deficit stress on 24 of soybean (Glycine Max. L) cultivars and lines in temperate climate, an experiment was conducted in Iran Seed and Plant Improvement Institute. Stress levels were irrigation after evaporation of 50, 100, 150 mm water from pan, class A. Randomized Completely Block Design was arranged for each stress levels. Some traits such as, node number, plant height, pod number per area, grain number per pod, grain number per area, 1000 grains weight, grain yield and harvest index were measured. Results showed that water deficit stress had significant effect on node number, plant height, pod number per area, grain number per pod, grain number per area, 1000 grains weight and harvest index. Also all of agronomic traits except harvest index influenced significantly by cultivars and lines. The least and most grain yield was belonged to Ronak X Williams and M41 x Clark respectively.

Characterization of Atmospheric Particulate Matter using PIXE Technique

Coarse and fine particulate matter were collected at a residential area at Vashi, Navi Mumbai and the filter samples were analysed for trace elements using PIXE technique. The trend of particulate matter showed higher concentrations during winter than the summer and monsoon concentration levels. High concentrations of elements related to soil and sea salt were found in PM10 and PM2.5. Also high levels of zinc and sulphur found in the particulates of both the size fractions. EF analysis showed enrichment of Cu, Cr and Mn only in the fine fraction suggesting their origin from anthropogenic sources. The EF value was observed to be maximum for As, Pb and Zn in the fine particulates. However, crustal derived elements showed very low EF values indicating their origin from soil. The PCA based multivariate studies identified soil, sea salt, combustion and Se sources as common sources for coarse and additionally an industrial source has also been identified for fine particles.

Firing Angle Range Control For Minimising Harmonics in TCR Employed in SVC-s

Most electrical distribution systems are incurring large losses as the loads are wide spread, inadequate reactive power compensation facilities and their improper control. A typical static VAR compensator consists of capacitor bank in binary sequential steps operated in conjunction with a thyristor controlled reactor of the smallest step size. This SVC facilitates stepless control of reactive power closely matching with load requirements so as to maintain power factor nearer to unity. This type of SVC-s requiring a appropriately controlled TCR. This paper deals with an air cored reactor suitable for distribution transformer of 3phase, 50Hz, Dy11, 11KV/433V, 125 KVA capacity. Air cored reactors are designed, built, tested and operated in conjunction with capacitor bank in five binary sequential steps. It is established how the delta connected TCR minimizes the harmonic components and the operating range for various electrical quantities as a function of firing angle is investigated. In particular firing angle v/s line & phase currents, D.C. components, THD-s, active and reactive powers, odd and even triplen harmonics, dominant characteristic harmonics are all investigated and range of firing angle is fixed for satisfactory operation. The harmonic spectra for phase and line quantities at specified firing angles are given. In case the TCR is operated within the bound specified in this paper established through simulation studies are yielding the best possible operating condition particularly free from all dominant harmonics.

A proposed High-Resolution Time-Frequency Distribution for the Analysis of Multicomponent and Speech Signals

In this paper, we propose a novel time-frequency distribution (TFD) for the analysis of multi-component signals. In particular, we use synthetic as well as real-life speech signals to prove the superiority of the proposed TFD in comparison to some existing ones. In the comparison, we consider the cross-terms suppression and the high energy concentration of the signal around its instantaneous frequency (IF).

X-Ray Intensity Measurement Using Frequency Output Sensor for Computed Tomography

Quality of 2D and 3D cross-sectional images produce by Computed Tomography primarily depend upon the degree of precision of primary and secondary X-Ray intensity detection. Traditional method of primary intensity detection is apt to errors. Recently the X-Ray intensity measurement system along with smart X-Ray sensors is developed by our group which is able to detect primary X-Ray intensity unerringly. In this study a new smart X-Ray sensor is developed using Light-to-Frequency converter TSL230 from Texas Instruments which has numerous advantages in terms of noiseless data acquisition and transmission. TSL230 construction is based on a silicon photodiode which converts incoming X-Ray radiation into the proportional current signal. A current to frequency converter is attached to this photodiode on a single monolithic CMOS integrated circuit which provides proportional frequency count to incoming current signal in the form of the pulse train. The frequency count is delivered to the center of PICDEM FS USB board with PIC18F4550 microcontroller mounted on it. With highly compact electronic hardware, this Demo Board efficiently read the smart sensor output data. The frequency output approaches overcome nonlinear behavior of sensors with analog output thus un-attenuated X-Ray intensities could be measured precisely and better normalization could be acquired in order to attain high resolution.

Low Jitter ADPLL based Clock Generator for High Speed SoC Applications

An efficient architecture for low jitter All Digital Phase Locked Loop (ADPLL) suitable for high speed SoC applications is presented in this paper. The ADPLL is designed using standard cells and described by Hardware Description Language (HDL). The ADPLL implemented in a 90 nm CMOS process can operate from 10 to 200 MHz and achieve worst case frequency acquisition in 14 reference clock cycles. The simulation result shows that PLL has cycle to cycle jitter of 164 ps and period jitter of 100 ps at 100MHz. Since the digitally controlled oscillator (DCO) can achieve both high resolution and wide frequency range, it can meet the demands of system-level integration. The proposed ADPLL can easily be ported to different processes in a short time. Thus, it can reduce the design time and design complexity of the ADPLL, making it very suitable for System-on-Chip (SoC) applications.

Improvement of Semen Quality in Holstein Bulls during Heat Stress by Supplementing Omega-3 Fatty Acids

The aim of current study was to investigate the changes in the quality parameters of Holstein bull semen during the heat stress and the effect of feeding a source of omega-3 fatty acids in this period. Samples were obtained from 19 Holstein bulls during the expected time of heat stress in Iran (June to September 2009). Control group (n=10) were fed a standard concentrate feed while treatment group (n=9) had this feed top dressed with 100 g of an omega-3 enriched nutriceutical. Semen quality was assessed on ejaculates collected after 1, 5, 9 and 12 weeks of supplementation. Computer-assisted assessment of sperm motility, viability (eosinnigrosin) and hypo-osmotic swelling test (HOST) were conducted. Heat stress affected sperm quality parameters by week 5 and 9 (p

Formation of Round Channel for Microfluidic Applications

PDMS (Polydimethylsiloxane) polymer is a suitable material for biological and MEMS (Microelectromechanical systems) designers, because of its biocompatibility, transparency and high resistance under plasma treatment. PDMS round channel is always been of great interest due to its ability to confine the liquid with membrane type micro valves. In this paper we are presenting a very simple way to form round shapemicrofluidic channel, which is based on reflow of positive photoresist AZ® 40 XT. With this method, it is possible to obtain channel of different height simply by varying the spin coating parameters of photoresist.

Neural Networks Approaches for Computing the Forward Kinematics of a Redundant Parallel Manipulator

In this paper, different approaches to solve the forward kinematics of a three DOF actuator redundant hydraulic parallel manipulator are presented. On the contrary to series manipulators, the forward kinematic map of parallel manipulators involves highly coupled nonlinear equations, which are almost impossible to solve analytically. The proposed methods are using neural networks identification with different structures to solve the problem. The accuracy of the results of each method is analyzed in detail and the advantages and the disadvantages of them in computing the forward kinematic map of the given mechanism is discussed in detail. It is concluded that ANFIS presents the best performance compared to MLP, RBF and PNN networks in this particular application.

Mobile to Server Face Recognition: A System Overview

This paper presents a system overview of Mobile to Server Face Recognition, which is a face recognition application developed specifically for mobile phones. Images taken from mobile phone cameras lack of quality due to the low resolution of the cameras. Thus, a prototype is developed to experiment the chosen method. However, this paper shows a result of system backbone without the face recognition functionality. The result demonstrated in this paper indicates that the interaction between mobile phones and server is successfully working. The result shown before the database is completely ready. The system testing is currently going on using real images and a mock-up database to test the functionality of the face recognition algorithm used in this system. An overview of the whole system including screenshots and system flow-chart are presented in this paper. This paper also presents the inspiration or motivation and the justification in developing this system.