Abstract: An active quarter car model with three degrees of freedom is presented for vibration reduction of passenger seat. The designed Fuzzy Logic Controller (FLC) and Self-Tuning Fuzzy Logic Controller (STFLC) are applied in seat suspension. Vibration control performance of active and passive quarter car systems are determined using simulation work. Simulation results in terms of passenger seat acceleration and displacement responses are compared for controlled and uncontrolled cases. Simulation results showed the improved results of both FLC and STFLC controllers in improving passenger ride comfort compared to uncontrolled case. Furthermore, the best performance in simulation studies is achieved by STFLC controlled suspension system compared to FLC controlled and uncontrolled cases.
Abstract: Maximum Power Point Tracking (MPPT) has played a vital role to enhance the efficiency of solar photovoltaic (PV) power generation under varying atmospheric temperature and solar irradiation. However, it is hard to track the maximum power point using conventional linear controllers due to the natural inheritance of nonlinear I-V and P-V characteristics of solar PV systems. Fuzzy Logic Controller (FLC) is suitable for nonlinear system control applications and eliminating oscillations, circuit complexities present in the conventional perturb and observation and incremental conductance methods respectively. Hence, in this paper, FLC is proposed for tracking exact MPPT of solar PV power generation system under varying solar irradiation conditions. The effectiveness of the proposed FLC-based MPPT controller is validated through simulation and analysis using MATLAB/Simulink.
Abstract: Brushless DC motors (BLDC) are widely used in
industrial areas. The BLDC motors are driven either by indirect ACAC
converters or by direct AC-AC converters. Direct AC-AC
converters i.e. matrix converters are used in this paper to drive the
three phase BLDC motor and it eliminates the bulky DC link energy
storage element. A matrix converter converts the AC power supply to
an AC voltage of variable amplitude and variable frequency. A
control technique is designed to generate the switching pulses for the
three phase matrix converter. For the control of speed of the BLDC
motor a separate PI controller and Fuzzy Logic Controller (FLC) are
designed and a hysteresis current controller is also designed for the
control of motor torque. The control schemes are designed and tested
separately. The simulation results of both the schemes are compared
and contrasted in this paper. The results show that the fuzzy logic
control scheme outperforms the PI control scheme in terms of
dynamic performance of the BLDC motor. Simulation results are
validated with the experimental results.
Abstract: In this paper, a novel fuzzy approach is developed
while solving the Dynamic Routing and Wavelength Assignment
(DRWA) problem in optical networks with Wavelength Division
Multiplexing (WDM). In this work, the effect of nonlinear and linear
impairments such as Four Wave Mixing (FWM) and amplifier
spontaneous emission (ASE) noise are incorporated respectively. The
novel algorithm incorporates fuzzy logic controller (FLC) to reduce
the effect of FWM noise and ASE noise on a requested lightpath
referred in this work as FWM aware fuzzy dynamic routing and
wavelength assignment algorithm. The FWM crosstalk products and
the static FWM noise power per link are pre computed in order to
reduce the set up time of a requested lightpath, and stored in an
offline database. These are retrieved during the setting up of a
lightpath and evaluated online taking the dynamic parameters like
cost of the links into consideration.
Abstract: The pursuit of the MPPT has led to the development of many kinds of controllers, one of which is the Fuzzy Logic controller, which has proven its worth. To further tune this controller this paper will discuss and analyze the use of Genetic Algorithms to tune the Fuzzy Logic Controller. It will provide an introduction to both systems, and test their compatibility and performance.
Abstract: This paper is based on the bridgeless single-phase Ac–Dc Power Factor Correction (PFC) converters with Fuzzy Logic Controller. High frequency isolated Cuk converters are used as a modular dc-dc converter in Discontinuous Conduction Mode (DCM) of operation of Power Factor Correction. The aim of this paper is to simplify the program complexity of the controller by reducing the number of fuzzy sets of the Membership Functions (MFs) and to improve the efficiency and to eliminate the power quality problems. The output of Fuzzy controller is compared with High frequency triangular wave to generate PWM gating signals of Cuk converter. The proposed topologies are designed to work in Discontinuous Conduction Mode (DCM) to achieve a unity power factor and low total harmonic distortion of the input current. The Fuzzy Logic Controller gives additional advantages such as accurate result, uncertainty and imprecision and automatic control circuitry. Performance comparisons between the proposed and conventional controllers and circuits are performed based on circuit simulations.
Abstract: This paper is based on the performance of the Switched Reluctance Motor (SRM) drives using Z-Source Inverter with the simplified rule base of Fuzzy Logic Controller (FLC) with the output scaling factor (SF) self-tuning mechanism are proposed. The aim of this paper is to simplify the program complexity of the controller by reducing the number of fuzzy sets of the membership functions (MFs) without losing the system performance and stability via the adjustable controller gain. ZSI exhibits both voltage-buck and voltage-boost capability. It reduces line harmonics, improves reliability, and extends output voltage range. The output SF of the controller can be tuned continuously by a gain updating factor, whose value is derived from fuzzy logic, with the plant error and error change ratio as input variables. Then the results, carried out on a four-phase 6/8 pole SRM based on the dSPACEDS1104 platform, to show the feasibility and effectiveness of the devised methods and also performance of the proposed controllers will be compared with conventional counterpart.
Abstract: The objective of this study is to present the test
results of variable air volume (VAV) air conditioning system
optimized by two objective genetic algorithm (GA). The objective
functions are energy savings and thermal comfort. The optimal set
points for fuzzy logic controller (FLC) are the supply air temperature
(Ts), the supply duct static pressure (Ps), the chilled water
temperature (Tw), and zone temperature (Tz) that is taken as the
problem variables. Supply airflow rate and chilled water flow rate are
considered to be the constraints. The optimal set point values are
obtained from GA process and assigned into fuzzy logic controller
(FLC) in order to conserve energy and maintain thermal comfort in
real time VAV air conditioning system. A VAV air conditioning
system with FLC installed in a software laboratory has been taken for
the purpose of energy analysis. The total energy saving obtained in
VAV GA optimization system with FLC compared with constant air
volume (CAV) system is expected to achieve 31.5%. The optimal
duct static pressure obtained through Genetic fuzzy methodology
attributes to better air distribution by delivering the optimal quantity
of supply air to the conditioned space. This combination enhanced
the advantages of uniform air distribution, thermal comfort and
improved energy savings potential.
Abstract: This paper presents the use of the predictive fuzzy logic controller (PFLC) applied to attitude control system for agile micro-satellite. In order to reduce the effect of unpredictable time delays and large uncertainties, the algorithm employs predictive control to predict the attitude of the satellite. Comparison of the PFLC and conventional fuzzy logic controller (FLC) is presented to evaluate the performance of the control system during attitude maneuver. The two proposed models have been analyzed with the same level of noise and external disturbances. Simulation results demonstrated the feasibility and advantages of the PFLC on the attitude determination and control system (ADCS) of agile satellite.
Abstract: Active power filter continues to be a powerful tool to control harmonics in power systems thereby enhancing the power quality. This paper presents a fuzzy tuned PID controller based shunt active filter to diminish the harmonics caused by non linear loads like thyristor bridge rectifiers and imbalanced loads. Here Fuzzy controller provides the tuning of PID, based on firing of thyristor bridge rectifiers and variations in input rms current. The shunt APF system is implemented with three phase current controlled Voltage Source Inverter (VSI) and is connected at the point of common coupling for compensating the current harmonics by injecting equal but opposite filter currents. These controllers are capable of controlling dc-side capacitor voltage and estimating reference currents. Hysteresis Current Controller (HCC) is used to generate switching signals for the voltage source inverter. Simulation studies are carried out with non linear loads like thyristor bridge rectifier along with unbalanced loads and the results proved that the APF along with fuzzy tuned PID controller work flawlessly for different firing angles of non linear load.
Abstract: This paper presents the idea of a rough controller with application to control the overhead traveling crane system. The structure of such a controller is based on a suggested concept of a fuzzy logic controller. A measure of fuzziness in rough sets is introduced. A comparison between fuzzy logic controller and rough controller has been demonstrated. The results of a simulation comparing the performance of both controllers are shown. From these results we infer that the performance of the proposed rough controller is satisfactory.
Abstract: In this paper, Neuro-Fuzzy based Fuzzy Subtractive
Clustering Method (FSCM) and Self Tuning Fuzzy PD-like
Controller (STFPDC) were used to solve non-linearity and trajectory
problems of pitch AND yaw angles of Twin Rotor MIMO system
(TRMS). The control objective is to make the beams of TRMS reach
a desired position quickly and accurately. The proposed method
could achieve control objectives with simpler controller. To simplify
the complexity of STFPDC, ANFIS based FSCM was used to
simplify the controller and improve the response. The proposed
controllers could achieve satisfactory objectives under different input
signals. Simulation results under MATLAB/Simulink® proved the
improvement of response and superiority of simplified STFPDC on
Fuzzy Logic Controller (FLC).
Abstract: The design of Automatic Generation Control (AGC) system plays a vital role in automation of power system. This paper proposes Hybrid Neuro Fuzzy (HNF) approach for AGC of two-area interconnected reheat thermal power system with the consideration of Generation Rate Constraint (GRC). The advantage of proposed controller is that it can handle the system non-linearities and at the same time the proposed approach is faster than conventional controllers. The performance of HNF controller has been compared with that of both conventional Proportional Integral (PI) controller as well as Fuzzy Logic Controller (FLC) both in the absence and presence of Generation Rate Constraint (GRC). System performance is examined considering disturbance in each area of interconnected power system.
Abstract: In the present paper, active control system is used in
different heights of the building and the most effective part was
studied where the active control system is applied. The mathematical
model of the building is established in MATLAB and in order to
active control the system FLC method was used. Three different
locations of the building are chosen to apply active control system,
namely at the lowest story, the middle height of the building, and at
the highest point of the building with TMD system. The equation of
motion was written for high rise building and it was solved by statespace
method. Also passive control was used with Tuned Mass
Damper (TMD) at the top floor of the building to show the robustness
of FLC method when compared with passive control system.
Abstract: Static Var Compensator (SVC) is a shunt type FACTS
device which is used in power system primarily for the purpose of
voltage and reactive power control. In this paper, a fuzzy logic based
supplementary controller for Static Var Compensator (SVC) is
developed which is used for damping the rotor angle oscillations and
to improve the transient stability of the power system. Generator
speed and the electrical power are chosen as input signals for the
Fuzzy Logic Controller (FLC). The effectiveness and feasibility of
the proposed control is demonstrated with Single Machine Infinite
Bus (SMIB) system and multimachine system (WSCC System)
which show improvement over the use of a fixed parameter
controller.
Abstract: A novel design of two-wheeled robotic vehicle with moving payload is presented in this paper. A mathematical model describing the vehicle dynamics is derived and simulated in Matlab Simulink environment. Two control strategies were developed to stabilise the vehicle in the upright position. A robust Proportional- Integral-Derivative (PID) control strategy has been implemented and initially tested to measure the system performance, while the second control strategy is to use a hybrid fuzzy logic controller (FLC). The results are given on a comparative basis for the system performance in terms of disturbance rejection, control algorithms robustness as well as the control effort in terms of input torque.
Abstract: Advancements in the field of artificial intelligence
(AI) made during this decade have forever changed the way we look
at automating spacecraft subsystems including the electrical power
system. AI have been used to solve complicated practical problems
in various areas and are becoming more and more popular nowadays.
In this paper, a mathematical modeling and MATLAB–SIMULINK
model for the different components of the spacecraft power system is
presented. Also, a control system, which includes either the Neural
Network Controller (NNC) or the Fuzzy Logic Controller (FLC) is
developed for achieving the coordination between the components of
spacecraft power system as well as control the energy flows. The
performance of the spacecraft power system is evaluated by
comparing two control systems using the NNC and the FLC.