Abstract: In this paper, vibration control response of passenger seat in quarter car model having three degrees of freedom is studied. Three different control strategies are taken into account using Adaptive Neuro Fuzzy Inference System (ANFIS) controller. In first case, ANFIS controller is applied in main suspension of active quarter car model. In second case, passenger seat suspension is assembled with ANFIS controller. Finally, both main and passenger seat suspensions are integrated with ANFIS controller. Simulation work under random road excitations is performed using passive and controlled quarter car models for performance comparison of passenger ride comfort. Ride comfort analysis is also compared as per ISO 2631-1 criterion. The obtained simulation responses are compared taking passenger seat acceleration and displacement response in time and frequency domain for the selection of best control strategy in designed quarter car model.
Abstract: In this paper, passenger seat vibration control of an active quarter car model under random road excitations is considered. The designed ANFIS and Summing ANFIS PID controllers are assembled in primary suspension system of quarter car model. Simulation work is performed in time and frequency domain to obtain passenger seat acceleration and displacement responses. Simulation results show that Summing ANFIS PID based controller is highly suitable to suppress the road induced vibrations in quarter car model to achieve desired passenger ride comfort and safety compared to ANFIS and passive system.
Abstract: An active quarter car model with three degrees of freedom is presented for vibration reduction of passenger seat. The designed Fuzzy Logic Controller (FLC) and Self-Tuning Fuzzy Logic Controller (STFLC) are applied in seat suspension. Vibration control performance of active and passive quarter car systems are determined using simulation work. Simulation results in terms of passenger seat acceleration and displacement responses are compared for controlled and uncontrolled cases. Simulation results showed the improved results of both FLC and STFLC controllers in improving passenger ride comfort compared to uncontrolled case. Furthermore, the best performance in simulation studies is achieved by STFLC controlled suspension system compared to FLC controlled and uncontrolled cases.
Abstract: Sliding mode controller for a vehicle active suspension
system is designed in this study. The widely used quarter car model
is preferred and it is aimed to improve the ride comfort of the
passengers. The effect of the actuator time delay, which may arise
due to the information processing, sensors or actuator dynamics, is
also taken into account during the design of the controller. A sliding
mode controller was designed that has taken into account the actuator
time delay by using Smith predictor. The successful performance of
the designed controller is confirmed via numerical results.
Abstract: In this paper, passenger ride comfort issues are studied taking active quarter car model with three degrees of freedom. A hybrid fuzzy – PID controller with coupled rules (HFPIDCR) is designed for vibration control of passenger seat. Three different control strategies are considered. In first case, main suspension is controlled. In second case, passenger seat suspension is controlled. In third case, both main suspension and passenger seat suspensions are controlled. Passenger seat acceleration and displacement results are obtained using bump and sinusoidal type road disturbances. Finally, obtained simulation results of designed uncontrolled and controlled quarter car models are compared and discussed to select best control strategy for achieving high level of passenger ride comfort.
Abstract: The purpose of this paper is to present a modeling and
control of a quarter-car active suspension system with unknown
mass, unknown time-delay and road disturbance. The objective of
designing the controller is to derive a control law to achieve stability
of the system and convergence that can considerably improve ride
comfort and road disturbance handling. This is accomplished by
using Routh-Hurwitz criterion based on defined parameters.
Mathematical proof is given to show the ability of the designed
controller to ensure the target of design, implementation with the
active suspension system and enhancement dispersion oscillation of
the system despite these problems. Simulations were also performed
to control quarter car suspension, where the results obtained from
these simulations verify the validity of the proposed design.
Abstract: The development of vehicles having best ride comfort and safety of travelling passengers is of great interest for automotive manufacturers. The effect of transmitted vibrations from car body to passenger seat is required to be controlled for achieving the same. The application of magneto-rheological (MR) shock absorber in suspension system has been considered to achieve significant benefits in this regard. This paper introduces a secondary suspension controlled semi-active quarter car system using MR shock absorber for effective vibration control. Fuzzy logic control system is used for design of controller for actual damping force generation by MR shock absorber. Performance evaluations are done related to passenger seat acceleration and displacement in time and frequency domains, in order to see the effectiveness of the proposed semi-active suspension system. Simulation results show that the semi-active suspension system provides better results compared to passive suspension system in terms of passenger ride comfort improvement.
Abstract: This paper describes the development, modeling, and
testing of skyhook and MiniMax control strategies of semi-active
suspension. The control performances are investigated using
Matlab/Simulink [1], with a two-degree-of-freedom quarter car semiactive
suspension system model. The comparison and evaluation of
control result are made using software-in-the-loop simulation (SILS)
method. This paper also outlines the development of a hardware-inthe-
loop simulation (HILS) system. The simulation results show that
skyhook strategy can significantly reduce the resonant peak of body
and provide improvement in vehicle ride comfort. Otherwise,
MiniMax strategy can be employed to effectively improve drive
safety of vehicle by influencing wheel load. The two strategies can
be switched to control semi-active suspension system to fulfill
different requirement of vehicle in different stages.
Abstract: Active vibration isolation systems are less commonly
used than passive systems due to their associated cost and power
requirements. In principle, semi-active isolation systems can deliver
the versatility, adaptability and higher performance of fully active
systems for a fraction of the power consumption. Various semi-active
control algorithms have been suggested in the past. This paper
studies the 4DOF model of semi-active suspension performance
controlled by on–off and continuous skyhook damping control
strategy. The frequency and transient responses of model are
evaluated in terms of body acceleration, roll angle and tire deflection
and are compared with that of a passive damper. The results show
that the semi-active system controlled by skyhook strategy always
provides better isolation than a conventional passively damped
system except at tire natural frequencies.
Abstract: Nowadays, a passenger car suspension must has high
performance criteria with light weight, low cost, and low energy
consumption. Pilot controlled proportional valve is designed and
analyzed to get small pressure change rate after blow-off, and to get a
fast response of the damper, a reverse damping mechanism is adapted.
The reverse continuous variable damper is designed as a HS-SH
damper which offers good body control with reduced transferred input
force from the tire, compared with any other type of suspension
system. The damper structure is designed, so that rebound and
compression damping forces can be tuned independently, of which the
variable valve is placed externally. The rate of pressure change with
respect to the flow rate after blow-off becomes smooth when the fixed
orifice size increases, which means that the blow-off slope is
controllable using the fixed orifice size. Damping forces are measured
with the change of the solenoid current at the different piston
velocities to confirm the maximum hysteresis of 20 N, linearity, and
variance of damping force. The damping force variance is wide and
continuous, and is controlled by the spool opening, of which scheme is
usually adapted in proportional valves. The reverse continuous
variable damper developed in this study is expected to be utilized in
the semi-active suspension systems in passenger cars after its
performance and simplicity of the design is confirmed through a real
car test.
Abstract: An active suspension system has been proposed to
improve the ride comfort. A quarter-car 2 degree-of-freedom (DOF)
system is designed and constructed on the basis of the concept of a
four-wheel independent suspension to simulate the actions of an
active vehicle suspension system. The purpose of a suspension
system is to support the vehicle body and increase ride comfort. The
aim of the work described in the paper was to illustrate the
application of fuzzy logic technique to the control of a continuously
damping automotive suspension system. The ride comfort is
improved by means of the reduction of the body acceleration caused
by the car body when road disturbances from smooth road and real
road roughness.
The paper describes also the model and controller used in the
study and discusses the vehicle response results obtained from a
range of road input simulations. In the conclusion, a comparison of
active suspension fuzzy control and Proportional Integration
derivative (PID) control is shown using MATLAB simulations.
Abstract: A semi-active control strategy for suspension
systems of passenger cars is presented employing
Magnetorheological (MR) dampers. The vehicle is modeled with
seven DOFs including the, roll pitch and bounce of car body, and
the vertical motion of the four tires. In order to design an optimal
controller based on the actuator constraints, a Linear-Quadratic
Regulator (LQR) is designed. The design procedure of the LQR
consists of selecting two weighting matrices to minimize the energy
of the control system. This paper presents a hybrid optimization
procedure which is a combination of gradient-based and
evolutionary algorithms to choose the weighting matrices with
regards to the actuator constraint. The optimization algorithm is
defined based on maximum comfort and actuator constraints. It is
noted that utilizing the present control algorithm may significantly
reduce the vibration response of the passenger car, thus, providing
a comfortable ride.
Abstract: The paper presents the virtual model of the active
suspension system used for improving the dynamic behavior of a
motor vehicle. The study is focused on the design of the control
system, the purpose being to minimize the effect of the road
disturbances (which are considered as perturbations for the control
system). The analysis is performed for a quarter-car model, which
corresponds to the suspension system of the front wheel, by using the
DFC (Design for Control) software solution EASY5 (Engineering
Analysis Systems) of MSC Software. The controller, which is a PIDbased
device, is designed through a parametric optimization with the
Matrix Algebra Tool (MAT), considering the gain factors as design
variables, while the design objective is to minimize the overshoot of
the indicial response.
Abstract: The control of sprayer boom undesired vibrations pose a great challenge to investigators due to various disturbances and conditions. Sprayer boom movements lead to reduce of spread efficiency and crop yield. This paper describes the design of a novel control method for an active suspension system applying proportional-integral-derivative (PID) controller with an active force control (AFC) scheme integration of an iterative learning algorithm employed to a sprayer boom. The iterative learning as an intelligent method is principally used as a method to calculate the best value of the estimated inertia of the sprayer boom needed for the AFC loop. Results show that the proposed AFC-based scheme performs much better than the standard PID control technique. Also, this shows that the system is more robust and accurate.