Abstract: In projects like waterpower, transportation and
mining, etc., proving up the rock-mass structure and hidden tectonic
to estimate the geological body-s activity is very important.
Integrating the seismic results, drilling and trenching data,
CSAMT method was carried out at a planning dame site in southwest
China to evaluate the stability of a deformation. 2D and imitated 3D
inversion resistivity results of CSAMT method were analyzed. The
results indicated that CSAMT was an effective method for defining
an outline of deformation body to several hundred meters deep; the
Lung Pan Deformation was stable in natural conditions; but uncertain
after the future reservoir was impounded.
This research presents a good case study of the fine surveying and
research on complex geological structure and hidden tectonic in
engineering project.
Abstract: In seismic survey, the information regarding the
velocity of compression wave (Vp) as well as shear wave (Vs) are
very useful especially during the seismic interpretation. Previous
studies showed that both Vp and Vs determined by above methods
are totally different with respect to each other but offered good
approximation. In this study, both Vp and Vs of consolidated granite
rock were studied by using ultrasonic testing method and seismic
refraction method. In ultrasonic testing, two different condition of
rock are used which is dry and wet. The differences between Vp and
Vs getting by using ultrasonic testing and seismic refraction were
investigated and studied. The effect of water content in granite rock
towards the value of Vp and Vs during ultrasonic testing are also
measured. Within this work, the tolerance of the differences between
the velocity of seismic wave getting from ultrasonic testing and the
velocity of seismic wave getting from seismic refraction are also
measured and investigated.
Abstract: Petrology and geochemical characteristics of granitic
rocks from South Sulawesi, especially from Polewaliand Masamba
area are presented in order to elucidate their origin of magma and
geodynamic setting. The granitic rocks in these areas are dominated by
granodiorite and granite in composition. Quartz, K-feldspar and
plagioclase occur as major phases with hornblende and biotite as
major ferromagnesian minerals. All of the samples were plotted in
calc-alkaline field, show metaluminous affinity and typical of I-type
granitic rock. Harker diagram indicates that granitic rocks experienced
fractional crystallization during magmatic evolution. Both groups
displayed an extreme enrichment of LILE, LREE and a slight negative
Eu anomaly which resemble upper continental crust affinity. They
were produced from partial melting of upper continental crust and
have close relationship of sources composition within a suite. The
geochemical characteristics explained the arc related subduction
environment which later give an evidence of continent-continent
collision between Australia-derived microcontinent and Sundalandto
form continental arc environment.
Abstract: The scale dependence of the strength of virtually homogeneous rock is usually considered to be insignificant but the spectrum of discontinuities plays a very important role for the strength of differently sized rock elements and also controls the rock creep strain. Large-scale load tests comprised recording of the creep strain rate that was found to be strongly retarded and negligible for stresses lower than about 1/3 of the failure load. For higher stresses creep took place according to a log time law representing secondary creep that ultimately changed to tertiary creep and failure.
Abstract: The motorway segment between Tangier and Oued
R’mel has experienced, since the beginning of building works,
significant instability and landslides linked to a number of geological,
hydrogeological and geothermic factors affecting the different
formations.
The landslides observed are not fully understood, despite many
studies conducted on this segment. This study aims at producing new
methods to better explain the phenomena behind the landslides,
taking into account the geotechnical and geothermic contexts. This
analysis builds up on previous studies and geotechnical data collected
in the field.
The final body of data collected shall be processed through the
Plaxis software for a better and customizable view of the landslide
problems in the area, which will help tofind solutions and stabilize
land in the area.
Abstract: There is increasing evidence that earthquakes produce electromagnetic signals observable at the surface in the extremely low to very low freqency (ELF - VLF) range often in advance to the main event. These precursors are candidates for prediction purposes. Laboratory experiments con´¼ürm that material under load emits an electromagnetic signature, the detailed generation mechanisms how- ever are not well understood yet.
Abstract: This paper studies mixed-mode fracture mechanics in
rock based on experimental and numerical analyses. Experiments
were performed on sharp-cracked specimens using the modified
Arcan specimen test loading device. The modified Arcan specimen
test was, in association with a special loading device, an appropriate
apparatus for experimental mixed-mode fracture analysis. By
varying the loading angle from 0° to 90°, pure mode-I, pure mode-II
and a wide range of mixed-mode data were obtained experimentally.
Using the finite element results, correction factors applied to the
rectangular fracture specimen. By employing experimentally
measured critical loads and the aid of the finite element method,
mixed-mode fracture toughness for the limestone under consideration
determined.
Abstract: In this paper, we proposed a method to classify each
type of natural rock texture. Our goal is to classify 26 classes of rock
textures. First, we extract five features of each class by using
principle component analysis combining with the use of applied
spatial frequency measurement. Next, the effective node number of
neural network was tested. We used the most effective neural
network in classification process. The results from this system yield
quite high in recognition rate. It is shown that high recognition rate
can be achieved in separation of 26 stone classes.
Abstract: The impact force of a rockfall is mainly determined by
its moving behavior and velocity, which are contingent on the rock
shape, slope gradient, height, and surface roughness of the moving
path. It is essential to precisely calculate the moving path of the
rockfall in order to effectively minimize and prevent damages caused
by the rockfall. By applying the Colorado Rockfall Simulation
Program (CRSP) program as the analysis tool, this research studies the
influence of three shapes of rock (spherical, cylindrical and discoidal)
and surface roughness on the moving path of a single rockfall. As
revealed in the analysis, in addition to the slope gradient, the geometry
of the falling rock and joint roughness coefficient ( JRC ) of the slope
are the main factors affecting the moving behavior of a rockfall. On a
single flat slope, both the rock-s bounce height and moving velocity
increase as the surface gradient increases, with a critical gradient value
of 1:m = 1 . Bouncing behavior and faster moving velocity occur more
easily when the rock geometry is more oval. A flat piece tends to cause
sliding behavior and is easily influenced by the change of surface
undulation. When JRC
Abstract: The charnockitic and associated granitic rocks of Akure area were studied for their field and petrographic relationship's. The outcrops locations were plotted in Surfer 8. The granitic rock exhibits a porphyritic texture and outcrops in the north-eastern side of the study area while the charnockitics outcrop in the central/western part. An essentially dark coloured and fine grained intrusive exhibiting xenoliths and xenocrysts (plagioclase phenocrysts) of the granite outcrops between the granitic and charnockitic rocks. Mineralogically, the central rock combines the content of the other two indicating that it is most likely a product of their hybridization. The charnockitic magma is believed to have intruded and assimilated the granite substantially thereby contaminating itself and consequently emplacing the hybrid. The presented model of emplacement elucidates the hybridization proposal. Conclusively, the charnockitics are believed to be (a) younger than the granite, (b) of Pan-African age and (c) of igneous origin.
Abstract: Locating the critical slip surface with the minimum factor of safety for a rock slope is a difficult problem. In recent years, some modern global optimization methods have been developed with success in treating various types of problems, but very few of such methods have been applied to rock mechanical problems. In this paper, use of hybrid model based on artificial immune system and cellular learning automata is proposed. The results show that the algorithm is an effective and efficient optimization method with a high level of confidence rate.
Abstract: The Salman Farsi dam project is constructed on the Ghareh Agahaj River about 140km south of Shiraz city in the Zagros Mountains of southwestern Iran. This tectonic province of south-western Iran is characterized by a simple folded sedimentary sequence. The dam foundation rocks compose of the Asmari Formation of Oligo-miocene and generally comprise of a variety of karstified carbonate rocks varying from strong to weak rocks. Most of the rocks exposed at the dam site show a primary porosity due to incomplete diagenetic recrystallization and compaction. In addition to these primary dispositions to weathering, layering conditions (frequency and orientation of bedding) and the subvertical tectonic discontinuities channeled preferably the infiltrating by deep-sited hydrothermal solutions. Consequently the porosity results to be enlarged by dissolution and the rocks are expected to be karstified and to develop cavities in correspondence of bedding, major joint planes and fault zones. This kind of karsts is named hypogenic karsts which associated to the ascendant warm solutions. Field observations indicate strong karstification and vuggy intercalations especially in the middle part of the Asmari succession. The biggest karst in the dam axis which identified by speleological investigations is Golshany Cave with volume of about 150,000 m3. The tendency of the Asmari limestone for strong dissolution can alert about the seepage from the reservoir and area of the dam locality.
Abstract: The knowledge about rock layers thickness,especially above drilled mining pavements is crucial for workers safety. The measuring systems used nowadays are generally imperfect and there is a strong demand for improvement. The application of a new type of a measurement system called Self-excited Acoustical System is presentedin the paper. The system was applied until now to monitor stress changes in metal and concrete constructions. The change in measurement methodology resulted in possibility of measuring the thickness of the rocks above the tunnels as well as thickness of a singular rocklayer. The idea is to find two resonance frequencies of the self-exited system,which consists of a vibration exciter and vibration receiver placed at a distance, which are coupled with a proper power amplifier, and which operate in a closed loop with a positive feedback. The resonance with the higher amplitude determines thickness of the whole rock, whereas the lower amplitude resonance indicates thickness of a singular layer. The results of the laboratory tests conducted on a group of different rock materials are also presented.
Abstract: Based on the kinematic approach of limit analysis, a full set of upper bound solutions for the stability of homogeneous rock slopes subjected to tension cracks are obtained. The generalized Hoek-Brown failure criterion is employed to describe the non-linear strength envelope of rocks. In this paper, critical failure mechanisms are determined for cracks of known depth but unspecified location, cracks of known location but unknown depth, and cracks of unspecified location and depth. It is shown that there is a nearly up to 50% drop in terms of the stability factors for the rock slopes intersected by a tension crack compared with intact ones. Tables and charts of solutions in dimensionless forms are presented for ease of use by practitioners.
Abstract: Evaluation of the excavation-induced ground
movements is an important design aspect of support systems in urban
areas. Geological and geotechnical conditions of an excavation area
have significant effects on excavation-induced ground movements and
the related damage. This paper is aimed at studying the performance of
excavation walls supported by nails in jointed rock medium. The
performance of nailed walls is investigated based on evaluating the
excavation-induced ground movements. For this purpose, a set of
calibrated 2D finite element models are developed by taking into
account the nail-rock-structure interactions, the anisotropic properties
of jointed rock, and the staged construction process. The results of this
paper highlight effects of different parameters such as joint
inclinations, anisotropy of rocks and nail inclinations on deformation
parameters of excavation wall supported by nails.
Abstract: Jabal Omar is located in the western side of Makkah city in Saudi Arabia. The proposed Jabal Omar Development project includes several multi-storey buildings, roads, bridges and below ground structures founded at various depths. In this study, geological mapping and site inspection which covered pre-selected areas were carried out within the easily accessed parts. Geological features; including rock types, structures, degree of weathering, and geotechnical hazards were observed and analyzed with specified software and also were documented in form of photographs. The presence of joints and fractures in the area made the rock blocks small and weak. The site is full of jointing; it was observed that, the northern side consists of 3 to 4 jointing systems with 2 random fractures associated with dykes. The southern part is affected by 2 to 3 jointing systems with minor fault and shear zones. From the field measurements and observations, it was concluded that, the Jabal Omar intruded by andesitic and basaltic dykes of different thickness and orientation. These dykes made the outcrop weak, highly deformed and made the rock masses sensitive to weathering.
Abstract: Slope stability analyses are largely carried out by deterministic methods and evaluated through a single security factor. Although it is known that the geotechnical parameters can present great dispersal, such analyses are considered fixed and known. The probabilistic methods, in turn, incorporate the variability of input key parameters (random variables), resulting in a range of values of safety factors, thus enabling the determination of the probability of failure, which is an essential parameter in the calculation of the risk (probability multiplied by the consequence of the event). Among the probabilistic methods, there are three frequently used methods in geotechnical society: FOSM (First-Order, Second-Moment), Rosenblueth (Point Estimates) and Monte Carlo. This paper presents a comparison between the results from deterministic and probabilistic analyses (FOSM method, Monte Carlo and Rosenblueth) applied to a hypothetical slope. The end was held to evaluate the behavior of the slope and consequent risk analysis, which is used to calculate the risk and analyze their mitigation and control solutions. It can be observed that the results obtained by the three probabilistic methods were quite close. It should be noticed that the calculation of the risk makes it possible to list the priority to the implementation of mitigation measures. Therefore, it is recommended to do a good assessment of the geological-geotechnical model incorporating the uncertainty in viability, design, construction, operation and closure by means of risk management.
Abstract: Laboratory studies of the stress-strain behavior of rocks specimens were conducted by using acoustic emission and laser-ultrasonic diagnostics. The sensitivity of the techniques allowed changes in the internal structure of the specimens under uniaxial compressive load to be examined at micro- and macro scales. It was shown that microcracks appear in geologic materials when the stress level reaches about 50% of breaking strength. Also, the characteristic stress of the main crack formation was registered in the process of single-stage compression of rocks. On the base of laser-ultrasonic echoscopy, 2D visualization of the internal structure of rocky soil specimens was realized, and the microcracks arising during uniaxial compression were registered.
Abstract: The amount of resistance of a particular medium like soil to the moving objects is the interest of many areas in science. These include soil mechanics, geotechnical engineering, powder mechanics etc. Knowledge of drag force is also used for estimating the amount of momentum of fired objects like bullets. This paper focuses on measurement of drag force of sand on a cone when it moves at a low constant speed. A 30-degree apex angle cone has been used for this purpose. The study consisted of both loose and dense conditions of the soil. The applied speed has been in the range of 0.1 to 10 mm/min. The results indicate that the required force is basically independent of the cone speed; but, it is very dependent on the material densification and confining stress.
Abstract: This paper evaluates oil displacement by water in Hauterivian sandstone reservoir of Kashkari oil field in North of Afghanistan. The core samples of this oil field were taken out from well No-21st, and the relative permeability and fractional flow are analyzed. Steady state flow laboratory experiments are performed to empirically obtain the fractional flow curves and relative permeability in different water saturation ratio. The relative permeability represents the simultaneous flow behavior in the reservoir. The fractional flow approach describes the individual phases as fractional of the total flow. The fractional flow curve interprets oil displacement by water, and from the tangent of fractional flow curve can find out the average saturation behind the water front flow saturation. Therefore, relative permeability and fractional flow curves are suitable for describing the displacement of oil by water in a petroleum reservoir. The effects of irreducible water saturation, residual oil saturation on the displaceable amount of oil are investigated through Buckley-Leveret analysis.