Abstract: In an electric power grid connected wind generation system, dynamic control strategy is essential to use the wind energy efficiently as well as for an energy optimization. The present study has focused on decoupled power regulation of doubly fed induction generator, operating in wind turbine, in accordance with the vector control approach by applying fractional order proportional integral (FOPI) controller. The FOPI controller is designed based on a simple method; up such that the response of closed loop process is similar to the response of a specified fractional model whose transfer function is Bode’s ideal function. In this tuning operation, the parameters of the proposed fractional controller are established analytically using the impulse closed-loop response of the controlled process. To show the superior action of the developed FOPI controller in comparison with standard PI controller in different function conditions, the study is validated through simulation using the software MATLAB/Simulink.
Abstract: This paper appraises the performances of two control scenarios, for doubly fed induction generator (DFIG) operating in wind generation system (WGS), which are the direct decoupled control (DDC) and indirect decoupled control (IDC). Both control scenarios studied combines vector control and Maximum Power Point Tracking (MPPT) control theory so as to maximize the captured power through wind turbine. Modeling of DFIG based WGS and details of both control scenarios have been presented, a proportional integral controller is employed in the active and reactive power control loops for both control methods. The performance of the both control scenarios in terms of power reference tracking and robustness against machine parameters inconstancy has been shown, analyzed and compared, which can afford a reference to the operators and engineers of a wind farm. All simulations have been implemented via MATLAB/Simulink.
Abstract: In this paper, selective harmonic elimination pulse width modulation technique is employed to eliminate lower order harmonics like third by determination of solving non-linear equations. The cascaded H-bridge five level inverter is driven by the Peripheral Interface Controlled (PIC) Microcontroller 16F877A. The performance of single phase cascaded H-bridge five level inverter with relevant to harmonics and a variety of switches with solar cell as its input source is simulated by employing MATLAB/Simulink. A hardware model is developed to verify the performance of the developed system.
Abstract: Fuel Metering Unit (FMU) in fuel system of an aeroengine sometimes has direct influence on the engine performance, which is neglected for the sake of easy access to mathematical model of the engine in most cases. In order to verify the influence of FMU on an engine model, this paper presents a co-simulation of a stepping motor driven FMU (digital FMU) in a turboshaft aeroengine, using AMESim and MATLAB to obtain the steady and dynamic characteristics of the FMU. For this method, mechanical and hydraulic section of the unit is modeled through AMESim, while the stepping motor is mathematically modeled through MATLAB/Simulink. Combining these two sub-models yields an AMESim/MATLAB co-model of the FMU. A simplified component level model for the turboshaft engine is established and connected with the FMU model. Simulation results on the full model show that the engine model considering FMU characteristics describes the engine more precisely especially in its transition state. An FMU dynamics will cut down the rotation speed of the high pressure shaft and the inlet pressure of the combustor during the step response. The work in this paper reveals the impact of FMU on engine operation characteristics and provides a reference to an engine model for ground tests.
Abstract: In this paper, the average input current mode control is proposed for two-phase interleaved boost converter with two separate input inductors operating in continuous conduction mode (CCM). The required mathematical model is obtained from the equivalent circuits of its different four modes of operation. The small ripple approximation is derived to find the transfer functions from dynamic model using switching function. In average input current mode control, the inner current loop and outer voltage loop are designed with PI controller using bode analysis. Anti-windup structure is applied for PI controllers in control system. Moreover, the simulation work is carried out by MATLAB/Simulink. And, the hardware prototype is implemented by using low-cost microcontroller Arduino Nano. Finally, the laboratory prototype, available from the local market, is constructed to validate the mathematical model. The results show that the output voltage response is the faster rise time and settling time with acceptable overshoot.
Abstract: Generation of high DC voltages is necessary for testing the insulation material of high voltage AC transmission lines with long lengths. The harmonic and ripple contents of the output DC voltage supplied by high voltage DC circuits require the use of costly capacitors to smooth the output voltage after rectification. This paper proposes a new modular multiplier high voltage DC generator with embedded Cockcroft-Walton circuits that achieve a negligible harmonic and ripple contents of the output DC voltage without the need for costly filters to produce a nearly constant output voltage. In this new topology, Cockcroft-Walton modules are connected in series to produce a high DC output voltage. The modules are supplied by low input AC voltage sources that have the same magnitude and frequency and shifted from each other by a certain angle to eliminate the harmonics from the output voltage. The small ripple factor is provided by the smoothing column capacitors and the phase shifted input voltages of the cascaded modules. The constituent harmonics within each module are determined using Fourier analysis. The viability of the proposed DC generator for testing purposes and the effectiveness of the cascaded connection are confirmed by numerical simulations using MATLAB/Simulink.
Abstract: In the inter-connected power systems, a phenomenon called inter-area oscillation may be caused by several defects. In this paper, a study of the Maghreb countries inter-area power networks oscillation has been investigated. The inter-area oscillation monitoring can be enhanced by integrating Phasor Measurement Unit (PMU) technology installed in different places. The data provided by PMU and recorded by PDC will be used for the monitoring, analysis, and control purposes. The proposed approach has been validated by simulation using MATLAB/Simulink.
Abstract: In the era of technological advancement, use of computer technology has become inevitable. Hence it has become the need of the hour to integrate software methods in engineering curriculum as a part to boost pedagogy techniques. Simulations software is a great help to graduates of disciplines such as electrical engineering. Since electrical engineering deals with high voltages and heavy instruments, extra care must be taken while operating with them. The viable solution would be to have appropriate control. The appropriate control could be well designed if engineers have knowledge of kind of waveforms associated with the system. Though these waveforms can be plotted manually, but it consumes a lot of time. Hence aid of simulation helps to understand steady state of system and resulting in better performance. In this paper computer, aided teaching of transformer is carried out using MATLAB/Simulink. The test carried out on a transformer includes open circuit test and short circuit respectively. The respective parameters of transformer are then calculated using the values obtained from open circuit and short circuit test respectively using Simulink.
Abstract: Based on a survey conducted for second and third year students of the electrical engineering department at Maharishi Markandeshwar University, India, it was found that around 92% of students felt that it would be better to introduce a virtual environment for laboratory experiments. Hence, a need was felt to perform modern pedagogy techniques for students which consist of a virtual environment using MATLAB/Simulink. In this paper, a virtual environment for the speed control of a DC motor is performed using MATLAB/Simulink. The various speed control methods for the DC motor include the field resistance control method and armature voltage control method. The performance analysis of the DC motor is hence analyzed.
Abstract: In order to monitor the thermal behavior of an
asynchronous machine with squirrel cage rotor, a 9th-order extended
Kalman filter (EKF) algorithm is implemented to estimate the
temperatures of the stator windings, the rotor cage and the stator
core. The state-space equations of EKF are established based on
the electrical, mechanical and the simplified thermal models of an
asynchronous machine. The asynchronous machine with simplified
thermal model in Dymola is compiled as DymolaBlock, a physical
model in MATLAB/Simulink. The coolant air temperature, three-phase
voltages and currents are exported from the physical model and are
processed by EKF estimator as inputs. Compared to the temperatures
exported from the physical model of the machine, three parts of
temperatures can be estimated quite accurately by the EKF estimator.
The online EKF estimator is independent from the machine control
algorithm and can work under any speed and load condition if the
stator current is nonzero current system.
Abstract: This paper presents an optimal state feedback controller based on Linear Quadratic Regulator (LQR) for a two-rotor aero-dynamical system (TRAS). TRAS is a highly nonlinear multi-input multi-output (MIMO) system with two degrees of freedom and cross coupling. There are two parameters that define the behavior of LQR controller: state weighting matrix and control weighting matrix. The two parameters influence the performance of LQR. Particle Swarm Optimization (PSO) is proposed to optimally tune weighting matrices of LQR. The major concern of using LQR controller is to stabilize the TRAS by making the beam move quickly and accurately for tracking a trajectory or to reach a desired altitude. The simulation results were carried out in MATLAB/Simulink. The system is decoupled into two single-input single-output (SISO) systems. Comparing the performance of the optimized proportional, integral and derivative (PID) controller provided by INTECO, results depict that LQR controller gives a better performance in terms of both transient and steady state responses when PSO is performed.
Abstract: Industrial drives are source of serious power quality problems. In this, two typical industrial drives have been dealt with, namely, FOC induction motor drives and DTC induction motor drive. The Z-source inverter is an emerging topology of power electronic converters which is capable of buck boost characteristics. The performances of different control methods based Z-source inverters feeding these industrial drives have been investigated, in this work. The test systems have been modeled and simulated in MATLAB/SIMULINK. The results obtained after carrying out these simulations have been used to draw the conclusions.
Abstract: Maximum Power Point Tracking (MPPT) has played a vital role to enhance the efficiency of solar photovoltaic (PV) power generation under varying atmospheric temperature and solar irradiation. However, it is hard to track the maximum power point using conventional linear controllers due to the natural inheritance of nonlinear I-V and P-V characteristics of solar PV systems. Fuzzy Logic Controller (FLC) is suitable for nonlinear system control applications and eliminating oscillations, circuit complexities present in the conventional perturb and observation and incremental conductance methods respectively. Hence, in this paper, FLC is proposed for tracking exact MPPT of solar PV power generation system under varying solar irradiation conditions. The effectiveness of the proposed FLC-based MPPT controller is validated through simulation and analysis using MATLAB/Simulink.
Abstract: This paper presents a case study of using STATCOM to enhance the performance of Al-Qatraneh 33-kV transmission line. The location of the STATCOM was identified by maintaining minimum voltage drops at the 110 load nodes. The transmission line and the 110 load nodes have been modeled by MATLAB/Simulink. The suggested STATCOM and its location will increase the transmission capability of this transmission line and overcome the overload expected in the year 2020. The annual percentage loading rise has been considered as 14.35%. A graphical representation of the line-to-line voltages and the voltage drops at different load nodes is illustrated.
Abstract: This paper presents a model predictive control (MPC)
of a utility interactive three phase inverter (TPI) for a photovoltaic
(PV) system at commercial level. The proposed model uses phase
locked loop (PLL) to synchronize the TPI with the power electric
grid (PEG) and performs MPC control in a dq reference frame. TPI
model consists of a boost converter (BC), maximum power point
tracking (MPPT) control, and a three-leg voltage source inverter
(VSI). The operational model of VSI is used to synthesize the
sinusoidal current and track the reference. The model is validated
using a 35.7 kW PV system in Matlab/Simulink. Implementation
results show simplicity and accuracy, as well as reliability of the
model.
Abstract: This paper presents a power control for a Doubly Fed
Induction Generator (DFIG) using in Wind Energy Conversion
System (WECS) connected to the grid. The proposed control strategy
employs two nonlinear controllers, Backstipping (BSC) and slidingmode
controller (SMC) scheme to directly calculate the required
rotor control voltage so as to eliminate the instantaneous errors of
active and reactive powers. In this paper the advantages of BSC and
SMC are presented, the performance and robustness of this two
controller’s strategy are compared between them. First, we present a
model of wind turbine and DFIG machine, then a synthesis of the
controllers and their application in the DFIG power control.
Simulation results on a 1.5MW grid-connected DFIG system are
provided by MATLAB/Simulink.
Abstract: This paper is focused on the reference current
calculation in the compensation mode of the active DC traction
substations. The so-called p-q theory of the instantaneous reactive
power is used as theoretical foundation. The compensation goal of
total compensation is taken into consideration for the operation under
both sinusoidal and nonsinusoidal voltage conditions, through the
two objectives of unity power factor and perfect harmonic
cancelation. Four blocks of reference current generation implement
the conceived algorithms and they are included in a specific Simulink
library, which is useful in a DSP dSPACE-based platform working
under Matlab/Simulink. The simulation results validate the
correctness of the implementation and fulfillment of the
compensation tasks.
Abstract: In this study, we proposed two techniques to track the
maximum power point (MPPT) of a photovoltaic system. The first is
an intelligent control technique, and the second is robust used for
variable structure system. In fact the characteristics I-V and P–V of
the photovoltaic generator depends on the solar irradiance and
temperature. These climate changes cause the fluctuation of
maximum power point; a maximum power point tracking technique
(MPPT) is required to maximize the output power. For this we have
adopted a control by fuzzy logic (FLC) famous for its stability and
robustness. And a Siding Mode Control (SMC) widely used for
variable structure system. The system comprises a photovoltaic panel
(PV), a DC-DC converter, which is considered as an adaptation stage
between the PV and the load. The modelling and simulation of the
system is developed using MATLAB/Simulink. SMC technique
provides a good tracking speed in fast changing irradiation and when
the irradiation changes slowly or it is constant the panel power of
FLC technique presents a much smoother signal with less
fluctuations.
Abstract: This paper presents modeling of an Alternating
Current (AC) Photovoltaic (PV) module using Matlab/Simulink. The
proposed AC-PV module model is simple, realistic, and application
oriented. The model is derived on module level as compared to cell
level directly from the information provided by the manufacturer data
sheet. DC-PV module, MPPT control, BC, VSI and LC filter, all
were treated as a single unit. The model accounts for changes in
variations of both irradiance and temperature. The AC-PV module
proposed model is simulated and the results are compared with the
datasheet projected numbers to validate model’s accuracy and
effectiveness. Implementation and results demonstrate simplicity and
accuracy, as well as reliability of the model.
Abstract: This paper presents a model predictive control (MPC)
of a utility interactive (UI) single phase inverter (SPI) for a
photovoltaic (PV) system at residential/distribution level. The
proposed model uses single-phase phase locked loop (PLL) to
synchronize SPI with the grid and performs MPC control in a dq
reference frame. SPI model consists of boost converter (BC),
maximum power point tracking (MPPT) control, and a full bridge
(FB) voltage source inverter (VSI). No PI regulators to tune and
carrier and modulating waves are required to produce switching
sequence. Instead, the operational model of VSI is used to synthesize
sinusoidal current and track the reference. Model is validated using a
three kW PV system at the input of UI-SPI in Matlab/Simulink.
Implementation and results demonstrate simplicity and accuracy, as
well as reliability of the model.