Abstract: This paper appraises the performances of two control scenarios, for doubly fed induction generator (DFIG) operating in wind generation system (WGS), which are the direct decoupled control (DDC) and indirect decoupled control (IDC). Both control scenarios studied combines vector control and Maximum Power Point Tracking (MPPT) control theory so as to maximize the captured power through wind turbine. Modeling of DFIG based WGS and details of both control scenarios have been presented, a proportional integral controller is employed in the active and reactive power control loops for both control methods. The performance of the both control scenarios in terms of power reference tracking and robustness against machine parameters inconstancy has been shown, analyzed and compared, which can afford a reference to the operators and engineers of a wind farm. All simulations have been implemented via MATLAB/Simulink.
Abstract: The use of renewable energies is growing significantly worldwide. Faced with the increasing demand for electrical energy, mainly for the needs of remote, deserted and mountainous regions, numerous applications use photovoltaic energy. In this sense, the proposed study concerns a mathematical modeling and an experimental validation for the recovery of essential oil by a steam distillation system using photovoltaic energy. In this paper, we proceed to a modeling of the solar system that includes a photovoltaic (PV) generator with an electronic power converter allowing a continuation of the optimum operating point. The results obtained are promising and are validated practically.
Abstract: Solar photovoltaic (SPV) power systems can be
employed as electrical power sources to meet the daily residential
energy needs of rural areas that have no access to grid systems.
In view of this, a standalone SPV powered air cooling system is
proposed in this paper, which constitutes a dc-dc boost converter,
two voltage source inverters (VSI) connected to two brushless dc
(BLDC) motors which are coupled to a centrifugal water pump and
a fan blower. A simple and efficient Maximum Power Point Tracking
(MPPT) technique based on Silver Mean Method (SMM) is utilized
in this paper. The air cooling system is developed and simulated using
the MATLAB / Simulink environment considering the dynamic and
steady state variation in the solar irradiance.
Abstract: The present research presents a direct active and reactive power control (DPC) of a wind energy conversion system (WECS) for the maximum power point tracking (MPPT) based on a doubly fed induction generator (DFIG) connected to electric power grid. The control strategy of the Rotor Side Converter (RSC) is targeted in extracting a maximum of power under fluctuating wind speed. A fuzzy logic speed controller (FLC) has been used to ensure the MPPT. The Grid Side Converter is directed in a way to ensure sinusoidal current in the grid side and a smooth DC voltage. To reduce fluctuations, rotor torque and voltage use of multilevel inverters is a good way to remove the rotor harmony.
Abstract: The inherent nature of normal boost converter has more voltage stress across the power electronics switch and ripple. The presented formation of the front end rectifier stage for a photovoltaic (PV) organization is mainly used to give the supply. Further increasing of the solar efficiency is achieved by connecting the zero voltage soft switching boost converter. The zero voltage boost converter is used to convert the low level DC voltage to high level DC voltage. The inherent nature of zero voltage switching boost converter is used to shrink the voltage tension across the power electronics switch and ripple. The input stage allows the determined power point tracking to be used to extract supreme power from the sun when it is available. The hardware setup was implemented by using PIC Micro controller (16F877A).
Abstract: In this paper, a method for maximum power point tracking of a photovoltaic energy conversion system is presented. This method is based on using the difference between the power from the solar panel and an estimated power value to control the DC-DC converter of the photovoltaic system. The difference is continuously compared with a preset error permitted value. If the power difference is more than the error, the estimated power is multiplied by a factor and the operation is repeated until the difference is less or equal to the threshold error. The difference in power will be used to trigger a DC-DC boost converter in order to raise the voltage to where the maximum power point is achieved. The proposed method was experimentally verified through a PV energy conversion system driven by the OPAL-RT real time controller. The method was tested on varying radiation conditions and load requirements, and the Photovoltaic Panel was operated at its maximum power in different conditions of irradiation.
Abstract: In this paper, type-2 fuzzy logic control (T2FLC) and neuro-fuzzy control (NFC) for a doubly fed induction generator (DFIG) based on direct power control (DPC) with a fixed switching frequency is proposed for wind generation application. First, a mathematical model of the doubly-fed induction generator implemented in d-q reference frame is achieved. Then, a DPC algorithm approach for controlling active and reactive power of DFIG via fixed switching frequency is incorporated using PID. The performance of T2FLC and NFC, which is based on the DPC algorithm, are investigated and compared to those obtained from the PID controller. Finally, simulation results demonstrate that the NFC is more robust, superior dynamic performance for wind power generation system applications.
Abstract: Maximum Power Point Tracking (MPPT) has played a vital role to enhance the efficiency of solar photovoltaic (PV) power generation under varying atmospheric temperature and solar irradiation. However, it is hard to track the maximum power point using conventional linear controllers due to the natural inheritance of nonlinear I-V and P-V characteristics of solar PV systems. Fuzzy Logic Controller (FLC) is suitable for nonlinear system control applications and eliminating oscillations, circuit complexities present in the conventional perturb and observation and incremental conductance methods respectively. Hence, in this paper, FLC is proposed for tracking exact MPPT of solar PV power generation system under varying solar irradiation conditions. The effectiveness of the proposed FLC-based MPPT controller is validated through simulation and analysis using MATLAB/Simulink.
Abstract: The purpose of this paper is to study and compare two maximum power point tracking (MPPT) algorithms in a photovoltaic simulation system and also show a simulation study of maximum power point tracking (MPPT) for photovoltaic systems using perturb and observe algorithm and Incremental conductance algorithm. Maximum power point tracking (MPPT) plays an important role in photovoltaic systems because it maximize the power output from a PV system for a given set of conditions, and therefore maximize the array efficiency and minimize the overall system cost. Since the maximum power point (MPP) varies, based on the irradiation and cell temperature, appropriate algorithms must be utilized to track the (MPP) and maintain the operation of the system in it. MATLAB/Simulink is used to establish a model of photovoltaic system with (MPPT) function. This system is developed by combining the models established of solar PV module and DC-DC Boost converter. The system is simulated under different climate conditions. Simulation results show that the photovoltaic simulation system can track the maximum power point accurately.
Abstract: The article proposes maximum power point tracking without mechanical sensor using Multilayer Perceptron Neural Network (MLPNN). The aim of article is to reduce the cost and complexity but still retain efficiency. The experimental is that duty cycle is generated maximum power, if it has suitable qualification. The measured data from DC generator, voltage (V), current (I), power (P), turnover rate of power (dP), and turnover rate of voltage (dV) are used as input for MLPNN model. The output of this model is duty cycle for driving the converter. The experiment implemented using Arduino Uno board. This diagram is compared to MPPT using MLPNN and P&O control (Perturbation and Observation control). The experimental results show that the proposed MLPNN based approach is more efficiency than P&O algorithm for this application.
Abstract: The increasing demand of electric power is giving an
emphasis on the need for the maximum utilization of renewable
energy sources. On the other hand maintaining power quality to
satisfaction of utility is an essential requirement. In this paper the
design aspects of a Unified Power Quality Conditioner integrated
with photovoltaic system in a distributed generation is presented. The
proposed system consist of series inverter, shunt inverter are
connected back to back on the dc side and share a common dc-link
capacitor with Distributed Generation through a boost converter. The
primary task of UPQC is to minimize grid voltage and load current
disturbances along with reactive and harmonic power compensation.
In addition to primary tasks of UPQC, other functionalities such as
compensation of voltage interruption and active power transfer to the
load and grid in both islanding and interconnected mode have been
addressed. The simulation model is design in MATLAB/ Simulation
environment and the results are in good agreement with the published
work.
Abstract: Direct Torque Control (DTC) is an AC drive control
method especially designed to provide fast and robust responses. In
this paper a progressive algorithm for direct torque control of threephase
induction drive system supplied by photovoltaic arrays using
voltage source inverter to control motor torque and flux with
maximum power point tracking at different level of insolation is
presented. Experimental results of the new DTC method obtained by
an experimental rapid prototype system for drives are presented.
Simulation and experimental results confirm that the proposed system
gives quick, robust torque and speed responses at constant switching
frequencies.
Abstract: This paper presents a grid synchronization technique based on adaptive notch filter for SPV (Solar Photovoltaic) system along with MPPT (Maximum Power Point Tracking) techniques. An efficient grid synchronization technique offers proficient detection of various components of grid signal like phase and frequency. It also acts as a barrier for harmonics and other disturbances in grid signal. A reference phase signal synchronized with the grid voltage is provided by the grid synchronization technique to standardize the system with grid codes and power quality standards. Hence, grid synchronization unit plays important role for grid connected SPV systems. As the output of the PV array is fluctuating in nature with the meteorological parameters like irradiance, temperature, wind etc. In order to maintain a constant DC voltage at VSC (Voltage Source Converter) input, MPPT control is required to track the maximum power point from PV array. In this work, a variable step size P & O (Perturb and Observe) MPPT technique with DC/DC boost converter has been used at first stage of the system. This algorithm divides the dPpv/dVpv curve of PV panel into three separate zones i.e. zone 0, zone 1 and zone 2. A fine value of tracking step size is used in zone 0 while zone 1 and zone 2 requires a large value of step size in order to obtain a high tracking speed. Further, adaptive notch filter based control technique is proposed for VSC in PV generation system. Adaptive notch filter (ANF) approach is used to synchronize the interfaced PV system with grid to maintain the amplitude, phase and frequency parameters as well as power quality improvement. This technique offers the compensation of harmonics current and reactive power with both linear and nonlinear loads. To maintain constant DC link voltage a PI controller is also implemented and presented in this paper. The complete system has been designed, developed and simulated using SimPower System and Simulink toolbox of MATLAB. The performance analysis of three phase grid connected solar photovoltaic system has been carried out on the basis of various parameters like PV output power, PV voltage, PV current, DC link voltage, PCC (Point of Common Coupling) voltage, grid voltage, grid current, voltage source converter current, power supplied by the voltage source converter etc. The results obtained from the proposed system are found satisfactory.
Abstract: In this study, we proposed two techniques to track the
maximum power point (MPPT) of a photovoltaic system. The first is
an intelligent control technique, and the second is robust used for
variable structure system. In fact the characteristics I-V and P–V of
the photovoltaic generator depends on the solar irradiance and
temperature. These climate changes cause the fluctuation of
maximum power point; a maximum power point tracking technique
(MPPT) is required to maximize the output power. For this we have
adopted a control by fuzzy logic (FLC) famous for its stability and
robustness. And a Siding Mode Control (SMC) widely used for
variable structure system. The system comprises a photovoltaic panel
(PV), a DC-DC converter, which is considered as an adaptation stage
between the PV and the load. The modelling and simulation of the
system is developed using MATLAB/Simulink. SMC technique
provides a good tracking speed in fast changing irradiation and when
the irradiation changes slowly or it is constant the panel power of
FLC technique presents a much smoother signal with less
fluctuations.
Abstract: The pursuit of the MPPT has led to the development of many kinds of controllers, one of which is the Fuzzy Logic controller, which has proven its worth. To further tune this controller this paper will discuss and analyze the use of Genetic Algorithms to tune the Fuzzy Logic Controller. It will provide an introduction to both systems, and test their compatibility and performance.
Abstract: The most important component affecting the
efficiency of photovoltaic power systems are solar panels. In other
words, efficiency of these systems are significantly affected due to
the being low efficiency of solar panel. Thus, solar panels should be
operated under maximum power point conditions through a power
converter. In this study, design of boost converter has been carried
out with maximum power point tracking (MPPT) algorithm which is
incremental conductance (Inc-Cond). By using this algorithm,
importance of power converter in MPPT hardware design, impacts of
MPPT operation have been shown. It is worth noting that initial
operation point is the main criteria for determining the MPPT
performance. In addition, it is shown that if value of load resistance is
lower than critical value, failure operation is realized. For these
analyzes, direct duty control is used for simplifying the control.
Abstract: The electric power supplied by a photovoltaic power
generation systems depends on the solar irradiation and temperature.
The PV system can supply the maximum power to the load at a
particular operating point which is generally called as maximum
power point (MPP), at which the entire PV system operates with
maximum efficiency and produces its maximum power. Hence, a
Maximum power point tracking (MPPT) methods are used to
maximize the PV array output power by tracking continuously the
maximum power point. The proposed MPPT controller is designed
for 10kW solar PV system installed at Cape Institute of Technology.
This paper presents the fuzzy logic based MPPT algorithm. However,
instead of one type of membership function, different structures of
fuzzy membership functions are used in the FLC design. The
proposed controller is combined with the system and the results are
obtained for each membership functions in Matlab/Simulink
environment. Simulation results are decided that which membership
function is more suitable for this system.
Abstract: This paper presents a model predictive control (MPC)
of a utility interactive (UI) single phase inverter (SPI) for a
photovoltaic (PV) system at residential/distribution level. The
proposed model uses single-phase phase locked loop (PLL) to
synchronize SPI with the grid and performs MPC control in a dq
reference frame. SPI model consists of boost converter (BC),
maximum power point tracking (MPPT) control, and a full bridge
(FB) voltage source inverter (VSI). No PI regulators to tune and
carrier and modulating waves are required to produce switching
sequence. Instead, the operational model of VSI is used to synthesize
sinusoidal current and track the reference. Model is validated using a
three kW PV system at the input of UI-SPI in Matlab/Simulink.
Implementation and results demonstrate simplicity and accuracy, as
well as reliability of the model.
Abstract: It is well known that photovoltaic (PV) cells are an attractive source of energy. Abundant and ubiquitous, this source is one of the important renewable energy sources that have been increasing worldwide year by year. However, in the V-P characteristic curve of GPV, there is a maximum point called the maximum power point (MPP) which depends closely on the variation of atmospheric conditions and the rotation of the earth. In fact, such characteristics outputs are nonlinear and change with variations of temperature and irradiation, so we need a controller named maximum power point tracker MPPT to extract the maximum power at the terminals of photovoltaic generator. In this context, the authors propose here to study the modeling of a photovoltaic system and to find an appropriate method for optimizing the operation of the PV generator using two intelligent controllers respectively to track this point. The first one is based on artificial neural networks and the second on fuzzy logic. After the conception and the integration of each controller in the global process, the performances are examined and compared through a series of simulation. These two controller have prove by their results good tracking of the MPPT compare with the other method which are proposed up to now.
Abstract: This paper presents a simulation and mathematical model of stand-alone solar-wind-diesel based hybrid energy system (HES). A power management system is designed for multiple energy resources in a stand-alone hybrid energy system. Both Solar photovoltaic and wind energy conversion system consists of maximum power point tracking (MPPT), voltage regulation, and basic power electronic interfaces. An additional diesel generator is included to support and improve the reliability of stand-alone system when renewable energy sources are not available. A power management strategy is introduced to distribute the generated power among resistive load banks. The frequency regulation is developed with conventional phase locked loop (PLL) system. The power management algorithm was applied in Matlab®/Simulink® to simulate the results.