Abstract: Maximum Power Point Tracking (MPPT) has played a vital role to enhance the efficiency of solar photovoltaic (PV) power generation under varying atmospheric temperature and solar irradiation. However, it is hard to track the maximum power point using conventional linear controllers due to the natural inheritance of nonlinear I-V and P-V characteristics of solar PV systems. Fuzzy Logic Controller (FLC) is suitable for nonlinear system control applications and eliminating oscillations, circuit complexities present in the conventional perturb and observation and incremental conductance methods respectively. Hence, in this paper, FLC is proposed for tracking exact MPPT of solar PV power generation system under varying solar irradiation conditions. The effectiveness of the proposed FLC-based MPPT controller is validated through simulation and analysis using MATLAB/Simulink.
Abstract: Pulse width modulation (PWM) techniques have been
the subject of intensive research for different industrial and power
sector applications. A large variety of methods, different in concept
and performance, have been newly developed and described. This
paper analyzes the comparative merits of Sinusoidal Pulse Width
Modulation (SPWM) and Space Vector Pulse Width Modulation
(SVPWM) techniques and the suitability of these techniques in a
Shunt Active Filter (SAF). The objective is to select the scheme that
offers effective utilization of DC bus voltage and also harmonic
reduction at the input side. The effectiveness of the PWM techniques
is tested in the SAF configuration with a non linear load. The
performance of the SAF with the SPWM and (SVPWM) techniques
are compared with respect to the THD in source current. The study
reveals that in the context of closed loop SAF control with the
SVPWM technique there is only a minor improvement in THD. The
utilization of the DC bus with SVPWM is also not significant
compared to that with SPWM because of the non sinusoidal
modulating signal from the controller in SAF configuration.