Abstract: This paper features a comparative study performance of sliding mode controller (SMC) for closed-loop voltage control of direct current to direct current (DC-DC) three-cells buck converter connected in parallel, operating in continuous conduction mode (CCM), based on pulse-width modulation (PWM) with SMC based on hysteresis modulation (HM) where an adaptive feedforward technique is adopted. On one hand, for the PWM-based SM, the approach is to incorporate a fixed-frequency PWM scheme which is effectively a variant of SM control. On the other hand, for the HM-based SM, oncoming an adaptive feedforward control that makes the hysteresis band variable in the hysteresis modulator of the SM controller in the aim to restrict the switching frequency variation in the case of any change of the line input voltage or output load variation are introduced. The results obtained under load change, input change and reference change clearly demonstrates a similar dynamic response of both proposed techniques, their effectiveness is fast and smooth tracking of the desired output voltage. The PWM-based SM technique has greatly improved the dynamic behavior with a bit advantageous compared to the HM-based SM technique, as well as provide stability in any operating conditions. Simulation studies in MATLAB/Simulink environment have been performed to verify the concept.
Abstract: Synchronizing and damping torque coefficients of a synchronous machine can give a quite clear picture for machine behavior during transients. These coefficients are used as a power system transient stability measurement. In this paper, a crow search optimization algorithm is presented and implemented to study the power system stability during transients. The algorithm makes use of the machine responses to perform the stability study in time domain. The problem is formulated as a dynamic estimation problem. An objective function that minimizes the error square in the estimated coefficients is designed. The method is tested using practical system with different study cases. Results are reported and a thorough discussion is presented. The study illustrates that the proposed method can estimate the stability coefficients for the critical stable cases where other methods may fail. The tests proved that the proposed tool is an accurate and reliable tool for estimating the machine coefficients for assessment of power system stability.
Abstract: Available commercial applications of power system stabilizers assure optimal damping of synchronous generator’s oscillations only in a small part of operating range. Parameters of the power system stabilizer are usually tuned for the selected operating point. Extensive variations of the synchronous generator’s operation result in changed dynamic characteristics. This is the reason that the power system stabilizer tuned for the nominal operating point does not satisfy preferred damping in the overall operation area. The small-signal stability and the transient stability of the synchronous generators have represented an attractive problem for testing different concepts of the modern control theory. Of all the methods, the adaptive control has proved to be the most suitable for the design of the power system stabilizers. The adaptive control has been used in order to assure the optimal damping through the entire synchronous generator’s operating range. The use of the adaptive control is possible because the loading variations and consequently the variations of the synchronous generator’s dynamic characteristics are, in most cases, essentially slower than the adaptation mechanism. The paper shows the development and the application of the self-tuning power system stabilizer based on recursive least square identification method and linear quadratic regulator. Identification method is used to calculate the parameters of the Heffron-Phillips model of the synchronous generator. On the basis of the calculated parameters of the synchronous generator’s mathematical model, the synthesis of the linear quadratic regulator is carried-out. The identification and the synthesis are implemented on-line. In this way, the self-tuning power system stabilizer adapts to the different operating conditions. A purpose of this paper is to contribute to development of the more effective power system stabilizers, which would replace currently used linear stabilizers. The presented self-tuning power system stabilizer makes the tuning of the controller parameters easier and assures damping improvement in the complete operating range. The results of simulations and experiments show essential improvement of the synchronous generator’s damping and power system stability.
Abstract: Increasingly complex modern power systems require
stability, especially for transient and small disturbances. Transient
stability plays a major role in stability during fault and large
disturbance. This paper compares a power system stabilizer (PSS)
and static Var compensator (SVC) to improve damping oscillation
and enhance transient stability. The effectiveness of a PSS connected
to the exciter and/or governor in damping electromechanical
oscillations of isolated synchronous generator was tested. The SVC
device is a member of the shunt FACTS (flexible alternating current
transmission system) family, utilized in power transmission systems.
The designed model was tested with a multi-machine system
consisting of four machines six bus, using MATLAB/SIMULINK
software. The results obtained indicate that SVC solutions are better
than PSS.
Abstract: The growth in the demand of electrical energy is
leading to load on the Power system which increases the occurrence
of frequent oscillations in the system. The reason for the oscillations
is due to the lack of damping torque which is required to dominate
the disturbances of Power system. By using FACT devices, such as
Unified Power Flow Controller (UPFC) can control power flow,
reduce sub-synchronous resonances and increase transient stability.
Hence, UPFC is used to damp the oscillations occurred in Power
system. This research focuses on adapting the neuro fuzzy controller
for the UPFC design by connecting the infinite bus (SMIB - Single
machine Infinite Bus) to a linearized model of synchronous machine
(Heffron-Phillips) in the power system. This model gains the
capability to improve the transient stability and to damp the
oscillations of the system.
Abstract: High Voltage Direct Current (HVDC) power
transmission is employed to move large amounts of electric power.
There are several possibilities to enhance the transient stability in a
power system. One adequate option is by using the high
controllability of the HVDC if HVDC is available in the system. This
paper presents a control technique for HVDC to enhance the transient
stability. The strategy controls the power through the HVDC to help
make the system more transient stable during disturbances. Loss of
synchronism is prevented by quickly producing sufficient
decelerating energy to counteract accelerating energy gained during.
In this study, the power flow in the HVDC link is modulated with the
addition of an auxiliary signal to the current reference of the rectifier
firing angle controller. This modulation control signal is derived from
speed deviation signal of the generator utilizing a PD controller; the
utilization of a PD controller is suitable because it has the property of
fast response. The effectiveness of the proposed controller is
demonstrated with a SMIB test system.
Abstract: This paper discusses the performance of critical
trajectory method (CTrj) for power system transient stability analysis
under various loading settings and heavy fault condition. The method
obtains Controlling Unstable Equilibrium Point (CUEP) which is
essential for estimation of power system stability margins. The CUEP
is computed by applying the CTrjto the boundary controlling unstable
equilibrium point (BCU) method. The Proposed method computes a
trajectory on the stability boundary that starts from the exit point and
reaches CUEP under certain assumptions. The robustness and
effectiveness of the method are demonstrated via six power system
models and five loading conditions. As benchmark is used
conventional simulation method whereas the performance is compared
with and BCU Shadowing method.
Abstract: With the current rise in the demand of electrical energy, present-day power systems which are large and complex, will continue to grow in both size and complexity. Flexible AC Transmission System (FACTS) controllers provide new facilities, both in steady state power flow control and dynamic stability control. Thyristor Controlled Series Capacitor (TCSC) is one of FACTS equipment, which is used for power flow control of active power in electric power system and for increase of capacities of transmission lines. In this paper, a Backstepping Power Flow Controller (BPFC) for TCSC in multimachine power system is developed and tested. The simulation results show that the TCSC proposed controller is capable of controlling the transmitted active power and improving the transient stability when compared with conventional PI Power Flow Controller (PIPFC).
Abstract: The power system network is becoming more
complex nowadays and it is very difficult to maintain the stability
of the system. Today-s enhancement of technology makes it
possible to include new energy storage devices in the electric
power system. In addition, with the aid of power electronic
devices, it is possible to independently exchange active and
reactive power flow with the utility grid. The main purpose of this
paper proposes a Proportional – Integral (PI) control based 48 –
pulse Inverter based Static Synchronous Series Compensator
(SSSC) with and without Superconducting Magnetic Energy
Storage (SMES) used for enhancing the transient stability and
regulating power flow in automatic mode. Using a test power
system through the dynamic simulation in Matlab/Simulink
platform validates the performance of the proposed SSSC with and
without SMES system.
Abstract: This paper deals with stability analysis for synchronous reluctance motors drive. Special attention is paid to the transient performance with variations in motor's parameters such as Ld and Rs. A study of the dynamic control using d-q model is presented first in order to clarify the stability of the motor drive system. Based on the experimental parameters of the synchronous reluctance motor, this paper gives some simulation results using MATLAB/SIMULINK software packages. It is concluded that the motor parameters, especially Ld, affect the estimator stability and hence the whole drive system.
Abstract: The very nonlinear nature of the generator and system
behaviour following a severe disturbance precludes the use of
classical linear control technique. In this paper, a new approach of
nonlinear control is proposed for transient and steady state stability
analysis of a synchronous generator. The control law of the generator
excitation is derived from the basis of Lyapunov stability criterion.
The overall stability of the system is shown using Lyapunov
technique. The application of the proposed controller to simulated
generator excitation control under a large sudden fault and wide
range of operating conditions demonstrates that the new control
strategy is superior to conventional automatic voltage regulator
(AVR), and show very promising results.
Abstract: This paper presents an adaptive nonlinear position
controller with velocity constraint, capable of combining the
input-output linearization technique and Lyapunov stability theory.
Based on the Lyapunov stability theory, the adaptation law of the
proposed controller is derived along with the verification of the overall
system-s stability. Computer simulation results demonstrate that the
proposed controller is robust and it can ensure transient stability of
BLDCM, under the occurrence of a large sudden fault.
Abstract: This paper presents a procedure for modeling and tuning the parameters of Thyristor Controlled Series Compensation (TCSC) controller in a multi-machine power system to improve transient stability. First a simple transfer function model of TCSC controller for stability improvement is developed and the parameters of the proposed controller are optimally tuned. Genetic algorithm (GA) is employed for the optimization of the parameter-constrained nonlinear optimization problem implemented in a simulation environment. By minimizing an objective function in which the oscillatory rotor angle deviations of the generators are involved, transient stability performance of the system is improved. The proposed TCSC controller is tested on a multi-machine system and the simulation results are presented. The nonlinear simulation results validate the effectiveness of proposed approach for transient stability improvement in a multimachine power system installed with a TCSC. The simulation results also show that the proposed TCSC controller is also effective in damping low frequency oscillations.
Abstract: Power System Security is a major concern in real time
operation. Conventional method of security evaluation consists of
performing continuous load flow and transient stability studies by
simulation program. This is highly time consuming and infeasible
for on-line application. Pattern Recognition (PR) is a promising
tool for on-line security evaluation. This paper proposes a Support
Vector Machine (SVM) based binary classification for static and
transient security evaluation. The proposed SVM based PR approach
is implemented on New England 39 Bus and IEEE 57 Bus systems.
The simulation results of SVM classifier is compared with the other
classifier algorithms like Method of Least Squares (MLS), Multi-
Layer Perceptron (MLP) and Linear Discriminant Analysis (LDA)
classifiers.
Abstract: A considerable progress has been achieved in transient
stability analysis (TSA) with various FACTS controllers. But, all
these controllers are associated with single transmission line. This
paper is intended to discuss a new approach i.e. a multi-line FACTS
controller which is interline power flow controller (IPFC) for TSA of
a multi-machine power system network. A mathematical model of
IPFC, termed as power injection model (PIM) presented and this
model is incorporated in Newton-Raphson (NR) power flow
algorithm. Then, the reduced admittance matrix of a multi-machine
power system network for a three phase fault without and with IPFC
is obtained which is required to draw the machine swing curves. A
general approach based on L-index has also been discussed to find
the best location of IPFC to reduce the proximity to instability of a
power system. Numerical results are carried out on two test systems
namely, 6-bus and 11-bus systems. A program in MATLAB has
been written to plot the variation of generator rotor angle and speed
difference curves without and with IPFC for TSA and also a simple
approach has been presented to evaluate critical clearing time for test
systems. The results obtained without and with IPFC are compared
and discussed.
Abstract: The paper presents an investigation in to the effect of neural network predictive control of UPFC on the transient stability performance of a multimachine power system. The proposed controller consists of a neural network model of the test system. This model is used to predict the future control inputs using the damped Gauss-Newton method which employs ‘backtracking’ as the line search method for step selection. The benchmark 2 area, 4 machine system that mimics the behavior of large power systems is taken as the test system for the study and is subjected to three phase short circuit faults at different locations over a wide range of operating conditions. The simulation results clearly establish the robustness of the proposed controller to the fault location, an increase in the critical clearing time for the circuit breakers, and an improved damping of the power oscillations as compared to the conventional PI controller.
Abstract: In this paper, an improved technique for contingency
ranking using artificial neural network (ANN) is presented. The
proposed approach is based on multi-layer perceptrons trained by
backpropagation to contingency analysis. Severity indices in dynamic
stability assessment are presented. These indices are based on the
concept of coherency and three dot products of the system variables.
It is well known that some indices work better than others for a
particular power system. This paper along with test results using
several different systems, demonstrates that combination of indices
with ANN provides better ranking than a single index. The presented
results are obtained through the use of power system simulation
(PSS/E) and MATLAB 6.5 software.
Abstract: This paper reviews the optimization available
transmission capability (ATC) of power systems using a device of
FACTS named SSSC equipped with energy storage devices. So that,
emplacement and improvement of parameters of SSSC will be
illustrated. Thus, voltage magnitude constraints of network buses,
line transient stability constraints and voltage breakdown constraints
are considered. To help the calculations, a comprehensive program in
DELPHI is provided, which is able to simulate and trace the
parameters of SSSC has been installed on a specific line.
Furthermore, the provided program is able to compute ATC, TTC
and maximum value of their enhancement after using SSSC.
Abstract: Static Var Compensator (SVC) is a shunt type FACTS
device which is used in power system primarily for the purpose of
voltage and reactive power control. In this paper, a fuzzy logic based
supplementary controller for Static Var Compensator (SVC) is
developed which is used for damping the rotor angle oscillations and
to improve the transient stability of the power system. Generator
speed and the electrical power are chosen as input signals for the
Fuzzy Logic Controller (FLC). The effectiveness and feasibility of
the proposed control is demonstrated with Single Machine Infinite
Bus (SMIB) system and multimachine system (WSCC System)
which show improvement over the use of a fixed parameter
controller.
Abstract: A method has been developed for preparing load
models for power flow and stability. The load modeling
(LOADMOD) computer software transforms data on load class mix,
composition, and characteristics into the from required for
commonly–used power flow and transient stability simulation
programs. Typical default data have been developed for load
composition and characteristics. This paper defines LOADMOD
software and describes the dynamic and static load modeling
techniques used in this software and results of initial testing for
BAKHTAR power system.