Abstract: Many optimization techniques available in the literature have been developed in order to solve the problem of voltage stability enhancement in power systems. However, there are a number of drawbacks in the use of previous techniques aimed at determining the optimal location and size of reactive compensators in a network. In this paper, an Improved Cuckoo Search algorithm is applied as an appropriate optimization algorithm to determine the optimum location and size of a Static Var Compensator (SVC) in a transmission network. The main objectives are voltage stability improvement and total cost minimization. The results of the presented technique are then compared with other available optimization techniques.
Abstract: This paper investigates the performance comparison of SVC (Static VAR Compensator) and DSTATCOM (Distribution Static Synchronous Compensator) to improve voltage stability in Radial Distribution System (RDS) which are efficient FACTS (Flexible AC Transmission System) devices that are capable of controlling the active and reactive power flows in a power system line by appropriately controlling parameters using ANFIS. Simulations are carried out in MATLAB/Simulink environment for the IEEE-4 bus system to test the ability of increasing load. It is found that these controllers significantly increase the margin of load in the power systems.
Abstract: Increasingly complex modern power systems require
stability, especially for transient and small disturbances. Transient
stability plays a major role in stability during fault and large
disturbance. This paper compares a power system stabilizer (PSS)
and static Var compensator (SVC) to improve damping oscillation
and enhance transient stability. The effectiveness of a PSS connected
to the exciter and/or governor in damping electromechanical
oscillations of isolated synchronous generator was tested. The SVC
device is a member of the shunt FACTS (flexible alternating current
transmission system) family, utilized in power transmission systems.
The designed model was tested with a multi-machine system
consisting of four machines six bus, using MATLAB/SIMULINK
software. The results obtained indicate that SVC solutions are better
than PSS.
Abstract: The recent interest in alternative and renewable
energy systems results in increased installed capacity ratio of such
systems in total energy production of the world. Specifically, Wind
Energy Conversion Systems (WECS) draw significant attention
among possible alternative energy options, recently. On the contrary
of the positive points of penetrating WECS in all over the world in
terms of environment protection, energy independence of the
countries, etc., there are significant problems to be solved for the grid
connection of large scale WECS. The reactive power regulation,
voltage variation suppression, etc. can be presented as major issues to
be considered in this regard. Thus, this paper evaluates the
application of a Static VAr Compensator (SVC) unit for the reactive
power regulation and operation continuity of WECS during a fault
condition. The system is modeled employing the IEEE 13 node test
system. Thus, it is possible to evaluate the system performance with
an overall grid simulation model close to real grid systems. The
overall simulation model is developed in
MATLAB/Simulink/SimPowerSystems® environments and the
obtained results effectively match the target of the provided study.
Abstract: Due to the continuous increment of the load demand,
identification of weaker buses, improvement of voltage profile and
power losses in the context of the voltage stability problems has
become one of the major concerns for the larger, complex,
interconnected power systems. The objective of this paper is to
review the impact of Flexible AC Transmission System (FACTS)
controller in Wind generators connected electrical network for
maintaining voltage stability. Wind energy could be the growing
renewable energy due to several advantages. The influence of wind
generators on power quality is a significant issue; non uniform power
production causes variations in system voltage and frequency.
Therefore, wind farm requires high reactive power compensation; the
advances in high power semiconducting devices have led to the
development of FACTS. The FACTS devices such as for example
SVC inject reactive power into the system which helps in maintaining
a better voltage profile. The performance is evaluated on an IEEE 14
bus system, two wind generators are connected at low voltage buses
to meet the increased load demand and SVC devices are integrated at
the buses with wind generators to keep voltage stability. Power
flows, nodal voltage magnitudes and angles of the power network are
obtained by iterative solutions using MIPOWER.
Abstract: Power systems are operating under stressed condition
due to continuous increase in demand of load. This can lead to
voltage instability problem when face additional load increase or
contingency. In order to avoid voltage instability suitable size of
reactive power compensation at optimal location in the system is
required which improves the load margin. This work aims at
obtaining optimal size as well as location of compensation in the 39-
bus New England system with the help of Bacteria Foraging and
Genetic algorithms. To reduce the computational time the work
identifies weak candidate buses in the system, and then picks only
two of them to take part in the optimization. The objective function is
based on a recently proposed voltage stability index which takes into
account the weighted average sensitivity index is a simpler and faster
approach than the conventional CPF algorithm. BFOA has been
found to give better results compared to GA.
Abstract: This paper presents the simulation results of the
effects of sampling frequency on the total harmonic distortion (THD)
of three-phase inverters using the space vector pulse width
modulation (SVPWM) and space vector control (SVC) algorithms.
The relationship between the variables was studied using curve fitting
techniques, and it has been shown that, for 50 Hz inverters, there is
an exponential relation between the sampling frequency and THD up
to around 8500 Hz, beyond which the performance of the model
becomes irregular, and there is an negative exponential relation
between the sampling frequency and the marginal improvement to
the THD. It has also been found that the performance of SVPWM is
better than that of SVC with the same sampling frequency in most
frequency range, including the range where the performance of the
former is irregular.
Abstract: The 3D body movement signals captured during
human-human conversation include clues not only to the content of
people’s communication but also to their culture and personality.
This paper is concerned with automatic extraction of this information
from body movement signals. For the purpose of this research, we
collected a novel corpus from 27 subjects, arranged them into groups
according to their culture. We arranged each group into pairs and
each pair communicated with each other about different topics.
A state-of-art recognition system is applied to the problems of
person, culture, and topic recognition. We borrowed modeling,
classification, and normalization techniques from speech recognition.
We used Gaussian Mixture Modeling (GMM) as the main technique
for building our three systems, obtaining 77.78%, 55.47%, and
39.06% from the person, culture, and topic recognition systems
respectively. In addition, we combined the above GMM systems with
Support Vector Machines (SVM) to obtain 85.42%, 62.50%, and
40.63% accuracy for person, culture, and topic recognition
respectively.
Although direct comparison among these three recognition
systems is difficult, it seems that our person recognition system
performs best for both GMM and GMM-SVM, suggesting that intersubject
differences (i.e. subject’s personality traits) are a major
source of variation. When removing these traits from culture and
topic recognition systems using the Nuisance Attribute Projection
(NAP) and the Intersession Variability Compensation (ISVC)
techniques, we obtained 73.44% and 46.09% accuracy from culture
and topic recognition systems respectively.
Abstract: In this paper an isolated wind-diesel hybrid power
system has been considered for reactive power control study having
an induction generator for wind power conversion and synchronous
alternator with automatic voltage regulator (AVR) for diesel unit is
presented. The dynamic voltage stability evaluation is dependent on
small signal analysis considering a Static VAR Compensator (SVC)
and IEEE type -I excitation system. It's shown that the variable
reactive power source like SVC is crucial to meet the varying
demand of reactive power by induction generator and load and to
acquire an excellent voltage regulation of the system with minimum
fluctuations. Integral square error (ISE) criterion can be used to
evaluate the optimum setting of gain parameters. Finally the dynamic
responses of the power systems considered with optimum gain setting
will also be presented.
Abstract: In this article, coordinated tuning of power system stabilizer (PSS) with static var compensator (SVC) and thyristor controlled series capacitor (TCSC) in multi-machine power system is proposed. The design of proposed coordinated damping controller is formulated as an optimization problem and the controller gains are optimized instantaneously using advanced adaptive particle swarm optimization (AAPSO). The objective function is framed with the inter-area speed deviations of the generators and it is minimized using AAPSO to improve the dynamic stability of power system under severe disturbance. The proposed coordinated controller performance is evaluated under a wide range of system operating conditions with three-phase fault disturbance. Using time domain simulations the damping characteristics of proposed controller is compared with individually tuned PSS, SVC and TCSC controllers. Finally, the real-time simulations are carried out in Opal-RT hardware simulator to synchronize the proposed controller performance in the real world.
Abstract: In this paper the application of a hierarchical fuzzy system (HFS) based on MPSS and SVC in multi-machine environment is studied. Also the effect of communication lines active power variance signal between two ΔPTie-line regions, as one of the inputs of hierarchical fuzzy multi-input PSS and SVC (HFMPSS & SVC), on the increase of low frequency oscillation damping is examined. In the MPSS, to have better efficiency an auxiliary signal of reactive power deviation (ΔQ) is added with ΔP+ Δω input type PSS. The number of rules grows exponentially with the number of variables in a classic fuzzy system. To reduce the number of rules the HFS consists of a number of low-dimensional fuzzy systems in a hierarchical structure. Phasor model of SVC is described and used in this paper. The performances of MPSS and ΔPTie-line based HFMPSS and also the proposed method in damping inter-area mode of oscillation are examined in response to disturbances. The efficiency of the proposed model is examined by simulating a four-machine power system. Results show that the proposed method is performing satisfactorily within the whole range of disturbances and reduces the cost of system.
Abstract: Reactive power limit of power system is one of the major causes of voltage instability. The only way to save the system from voltage instability is to reduce the reactive power load or add additional reactive power to reaching the point of voltage collapse. In recent times, the application of FACTS devices is a very effective solution to prevent voltage instability due to their fast and very flexible control. In this paper, voltage stability assessment with SVC and TCSC devices is investigated and compared in the modified IEEE 30-bus test system. The fast voltage stability indicator (FVSI) is used to identify weakest bus and to assess the voltage stability of power system.
Abstract: In this paper, an optimal power flow based approach has been applied for multi-transactions deregulated environment for ATC determination with SVC and STATCOM. The main contribution of the paper is (i) OPF based approach for evaluation of ATC with multi-transactions, (ii) ATC enhancement with FACTS devices viz. SVC and STATCOM for intact and line contingency cases, (iii) Impact of ZIP load on ATC determination and comparison of ATC obtained with SVC and STATCOM. The results have been determined for intact and line contingency cases taking simultaneous as well as single transaction cases for IEEE 24 bus RTS.
Abstract: Power-system stability improvement by simultaneous tuning of power system stabilizer (PSS) and a Static Var Compensator (SVC) based damping controller is thoroughly investigated in this paper. Both local and remote signals with associated time delays are considered in the present study. The design problem of the proposed controller is formulated as an optimization problem, and differential evolution (DE) algorithm is employed to search for the optimal controller parameters. The performances of the proposed controllers are evaluated under different disturbances for both single-machine infinite bus power system and multi-machine power system. The performance of the proposed controllers with variations in the signal transmission delays has also been investigated. The proposed stabilizers are tested on a weakly connected power system subjected to different disturbances. Nonlinear simulation results are presented to show the effectiveness and robustness of the proposed control schemes over a wide range of loading conditions and disturbances. Further, the proposed design approach is found to be robust and improves stability effectively even under small disturbance conditions.
Abstract: This paper deals with the optimal choice and location of FACTS devices in deregulated power systems using Differential Evolution algorithm. The main objective of this paper is to achieve the power system economic generation allocation and dispatch in deregulated electricity market. Using the proposed method, the locations of the FACTS devices, their types and ratings are optimized simultaneously. Different kinds of FACTS devices such as TCSC and SVC are simulated in this study. Furthermore, their investment costs are also considered. Simulation results validate the capability of this new approach in minimizing the overall system cost function, which includes the investment costs of the FACTS devices and the bid offers of the market participants. The proposed algorithm is an effective and practical method for the choice and location of suitable FACTS devices in deregulated electricity market.
Abstract: This paper deals with the optimal choice and allocation of multi FACTS devices in Deregulated power system using Evolutionary Programming method. The objective is to achieve the power system economic generation allocation and dispatch in deregulated electricity market. Using the proposed method, the locations of the FACTS devices, their types and ratings are optimized simultaneously. Different kinds of FACTS devices are simulated in this study such as UPFC, TCSC, TCPST, and SVC. Simulation results validate the capability of this new approach in minimizing the overall system cost function, which includes the investment costs of the FACTS devices and the bid offers of the market participants. The proposed algorithm is an effective and practical method for the choice and allocation of FACTS devices in deregulated electricity market environment. The standard data of IEEE 14 Bus systems has been taken into account and simulated with aid of MAT-lab software and results were obtained.
Abstract: This paper presents the techniques for voltage control in distribution system. It is integrated in the distribution management system. Voltage is an important parameter for the control of electrical power systems. The distribution network operators have the responsibility to regulate the voltage supplied to consumer within statutory limits. Traditionally, the On-Load Tap Changer (OLTC) transformer equipped with automatic voltage control (AVC) relays is the most popular and effective voltage control device. A static synchronous compensator (STATCOM) may be equipped with several controllers to perform multiple control functions. Static Var Compensation (SVC) is regulation slopes and available margins for var dispatch. The voltage control in distribution networks is established as a centralized analytical function in this paper.
Abstract: Support vector clustering (SVC) is an important kernelbased clustering algorithm in multi applications. It has got two main bottle necks, the high computation price and labeling piece. In this paper, we presented a modified SVC method, named Grid–SVC, to improve the original algorithm computationally. First we normalized and then we parted the interval, where the SVC is processing, using a novel Grid–based clustering algorithm. The algorithm parts the intervals, based on the density function of the data set and then applying the cartesian multiply makes multi-dimensional grids. Eliminating many outliers and noise in the preprocess, we apply an improved SVC method to each parted grid in a parallel way. The experimental results show both improvement in time complexity order and the accuracy.
Abstract: Modern industrial processes are based on a large amount of electronic devices such as programmable logic controllers and adjustable speed drives. Unfortunately, electronic devices are sensitive to disturbances, and thus, industrial loads become less tolerant to power quality problems such as sags, swells, and harmonics. Voltage sags are an important power quality problem. In this paper proposed a new configuration of Static Var Compensator (SVC) considering three different conditions named as topologies and Booster transformer with fuzzy logic based controller, capable of compensating for power quality problems associated with voltage sags and maintaining a prescribed level of voltage profile. Fuzzy logic controller is designed to achieve the firing angles for SVC such that it maintains voltage profile. The online monitoring system for voltage sag mitigation in the laboratory using the hardware is used. The results are presented from the performance of each topology and Booster transformer considered in this paper.
Abstract: This paper presents a methodology to assess the voltage stability status combined with optimal power flow technique using an instantaneous two-bus equivalent model of power system incorporating static var compensator (SVC) and thyristor controlled series compensator (TCSC) controllers. There by, a generalized global voltage stability indicator being developed has been applied to a robust practical Indian Eastern Grid 203-bus system. Simulation results have proved that the proposed methodology is promising to assess voltage stability of any power system at any operating point in global scenario. Voltage stability augmentation with the application of SVC at the weakest bus and TCSC at critical line connected to the weakest bus is compared with the system having no compensation. In the proposed network equivalent model the generators have been modeled more accurately considering economic criteria.