Abstract: The growth in the demand of electrical energy is
leading to load on the Power system which increases the occurrence
of frequent oscillations in the system. The reason for the oscillations
is due to the lack of damping torque which is required to dominate
the disturbances of Power system. By using FACT devices, such as
Unified Power Flow Controller (UPFC) can control power flow,
reduce sub-synchronous resonances and increase transient stability.
Hence, UPFC is used to damp the oscillations occurred in Power
system. This research focuses on adapting the neuro fuzzy controller
for the UPFC design by connecting the infinite bus (SMIB - Single
machine Infinite Bus) to a linearized model of synchronous machine
(Heffron-Phillips) in the power system. This model gains the
capability to improve the transient stability and to damp the
oscillations of the system.
Abstract: High Voltage Direct Current (HVDC) power
transmission is employed to move large amounts of electric power.
There are several possibilities to enhance the transient stability in a
power system. One adequate option is by using the high
controllability of the HVDC if HVDC is available in the system. This
paper presents a control technique for HVDC to enhance the transient
stability. The strategy controls the power through the HVDC to help
make the system more transient stable during disturbances. Loss of
synchronism is prevented by quickly producing sufficient
decelerating energy to counteract accelerating energy gained during.
In this study, the power flow in the HVDC link is modulated with the
addition of an auxiliary signal to the current reference of the rectifier
firing angle controller. This modulation control signal is derived from
speed deviation signal of the generator utilizing a PD controller; the
utilization of a PD controller is suitable because it has the property of
fast response. The effectiveness of the proposed controller is
demonstrated with a SMIB test system.
Abstract: Power system stabilizers (PSS) are now routinely used in the industry to damp out power system oscillations. In this paper, real-coded genetic algorithm (RCGA) optimization technique is applied to design robust power system stabilizer for both singlemachine infinite-bus (SMIB) and multi-machine power system. The design problem of the proposed controller is formulated as an optimization problem and RCGA is employed to search for optimal controller parameters. By minimizing the time-domain based objective function, in which the deviation in the oscillatory rotor speed of the generator is involved; stability performance of the system is improved. The non-linear simulation results are presented under wide range of operating conditions; disturbances at different locations as well as for various fault clearing sequences to show the effectiveness and robustness of the proposed controller and their ability to provide efficient damping of low frequency oscillations.
Abstract: this paper focuses on designing of PSS and SVC
controller based on chaos and PSO algorithms to improve the
stability of power system. Single machine infinite bus (SMIB) system
with SVC located at the terminal of generator has been considered to
evaluate the proposed controllers where both SVC and PSS have the
same controller. The coefficients of PSS and SVC controller have
been optimized by chaos and PSO algorithms. Finally the system
with proposed controllers has been simulated for the special
disturbance in input power of generator, and then the dynamic
responses of generator have been presented. The simulation results
showed that the system composed with recommended controller has
outstanding operation in fast damping of oscillations of power system.
Abstract: The main objective of this paper is a comparative
investigate in enhancement of damping power system oscillation via
coordinated design of the power system stabilizer (PSS) and static
synchronous series compensator (SSSC) and static synchronous
compensator (STATCOM). The design problem of FACTS-based
stabilizers is formulated as a GA based optimization problem. In this
paper eigenvalue analysis method is used on small signal stability of
single machine infinite bus (SMIB) system installed with SSSC and
STATCOM. The generator is equipped with a PSS. The proposed
stabilizers are tested on a weakly connected power system with
different disturbances and loading conditions. This aim is to enhance
both rotor angle and power system stability. The eigenvalue analysis
and non-linear simulation results are presented to show the effects of
these FACTS-based stabilizers and reveal that SSSC exhibits the best
effectiveness on damping power system oscillation.
Abstract: Static Var Compensator (SVC) is a shunt type FACTS
device which is used in power system primarily for the purpose of
voltage and reactive power control. In this paper, a fuzzy logic based
supplementary controller for Static Var Compensator (SVC) is
developed which is used for damping the rotor angle oscillations and
to improve the transient stability of the power system. Generator
speed and the electrical power are chosen as input signals for the
Fuzzy Logic Controller (FLC). The effectiveness and feasibility of
the proposed control is demonstrated with Single Machine Infinite
Bus (SMIB) system and multimachine system (WSCC System)
which show improvement over the use of a fixed parameter
controller.
Abstract: Static synchronous compensator (STATCOM) is a shunt connected voltage source converter (VSC), which can affect rapid control of reactive flow in the transmission line by controlling the generated a.c. voltage. The main aim of the paper is to design a power system installed with a Static synchronous compensator (STATCOM) and demonstrates the application of the linearised Phillips-heffron model in analyzing the damping effect of the STATCOM to improve power system oscillation stability. The proposed PI controller is designed to coordinate two control inputs: Voltage of the injection bus and capacitor voltage of the STATCOM, to improve the Dynamic stability of a SMIB system .The power oscillations damping (POD) control and power system stabilizer (PSS) and their coordinated action with proposed controllers are tested. The simulation result shows that the proposed damping controllers provide satisfactory performance in terms of improvements of dynamic stability of the system.
Abstract: This paper presents optimal based damping controllers of Unified Power Flow Controller (UPFC) for improving the damping power system oscillations. The design problem of UPFC damping controller and system configurations is formulated as an optimization with time domain-based objective function by means of Adaptive Tabu Search (ATS) technique. The UPFC is installed in Single Machine Infinite Bus (SMIB) for the performance analysis of the power system and simulated using MATLAB-s simulink. The simulation results of these studies showed that designed controller has an tremendous capability in damping power system oscillations.