Abstract: Passive air pollution control devices known as aspiration efficiency reducers (AER) have been developed using aspiration efficiency (AE) concepts. Their purpose is to reduce the concentration of particulate matter (PM) drawn into a building air handling unit (AHU) through alterations in the inlet design improving energy consumption. In this paper an examination is conducted into the effect of installing a deflector system around an AER-AHU inlet for both a forward and rear-facing orientations relative to the wind. The results of the study found that these deflectors are an effective passive control method for reducing AE at various ambient wind speeds over a range of microparticles of varying diameter. The deflector system was found to induce a large wake zone at low ambient wind speeds for a rear-facing AER-AHU, resulting in significantly lower AE in comparison to without. As the wind speed increased, both contained a wake zone but have much lower concentration gradients with the deflectors. For the forward-facing models, the deflector system at low ambient wind speed was preferred at higher Stokes numbers but there was negligible difference as the Stokes number decreased. Similarly, there was no significant difference at higher wind speeds across the Stokes number range tested. The results demonstrate that a deflector system is a viable passive control method for the reduction of ventilation energy consumption.
Abstract: Seismic isolators have been utilized around the world to protect the structures, nonstructural components and contents from the damaging effects of earthquakes. In Structural Engineering, seismic isolation is used for protecting buildings and its vibration-sensitive contents from earthquakes. Seismic isolation is a passive control system that lowers effective earthquake forces by utilizing flexible bearings. One of the most significant isolation systems is seismic isolators. In this paper, double pendulum type Teflon coated seismic isolators utilized in a city hospital project by Guris Construction and Engineering Co. Inc, located in Kutahya, Turkey, have been investigated. Totally, 498 seismic isolators were applied in the project. These isolators are double friction pendulum type seismic isolation devices. The review of current practices is also examined in this study. The focus of this study is related to the application of passive seismic isolation systems for buildings as practiced in Kutahya City Hospital Project. Based on the study, the acceleration at the top floor will be 0.18 g and it will decrease 0.01 g in every floor. Therefore, seismic isolators are very important for buildings located in earthquake zones.
Abstract: This study investigates the benefits of implementing the semi-active devices in relation to passive viscous damping in the context of seismically isolated bridge structures. Since the intrinsically nonlinear nature of semi-active devices prevents the direct evaluation of Laplace transforms, frequency response functions are compiled from the computed time history response to sinusoidal and pulse-like seismic excitation. A simple semi-active control policy is used in regard to passive linear viscous damping and an optimal non-causal semi-active control strategy. The control strategy requires optimization. Euler-Lagrange equations are solved numerically during this procedure. The optimal closed-loop performance is evaluated for an idealized controllable dash-pot. A simplified single-degree-of-freedom model of an isolated bridge is used as numerical example. Two bridge cases are investigated. These cases are; bridge deck without the isolation bearing and bridge deck with the isolation bearing. To compare the performances of the passive and semi-active control cases, frequency dependent acceleration, velocity and displacement response transmissibility ratios Ta(w), Tv(w), and Td(w) are defined. To fully investigate the behavior of the structure subjected to the sinusoidal and pulse type excitations, different damping levels are considered. Numerical results showed that, under the effect of external excitation, bridge deck with semi-active control showed better structural performance than the passive bridge deck case.
Abstract: The hi-tech industries in the Science Park at southern Taiwan were heavily damaged by a strong earthquake early 2016. The financial loss in this event was attributed primarily to the automated stocker system handling fully processed products, and recovery of the automated stocker system from the aftermath proved to contribute major lead time. Therefore, development of effective means for protection of stockers against earthquakes has become the highest priority for risk minimization and business continuity. This study proposes to mitigate the seismic response of the stockers by introducing viscous fluid dampers in between the ceiling and the top of the stockers. The stocker is expected to vibrate less violently with a passive control force on top. Linear damper is considered in this application with an optimal damping coefficient determined from a preliminary parametric study. The damper is small in size in comparison with those adopted for building or bridge applications. Component test of the dampers has been carried out to make sure they meet the design requirement. Shake table tests have been further conducted to verify the proposed scheme under realistic earthquake conditions. Encouraging results have been achieved by effectively reducing the seismic responses of up to 60% and preventing the FOUPs from falling off the shelves that would otherwise be the case if left unprotected. Effectiveness of adopting a viscous fluid damper for seismic control of the stocker on top against the ceiling has been confirmed. This technique has been adopted by Macronix International Co., LTD for seismic retrofit of existing stockers. Demonstrative projects on the application of the proposed technique are planned underway for other companies in the display industry as well.
Abstract: This research examines the performance of a hybrid passive control device for enhancing the seismic response of steel frame structures. The device design comprises a damper which employs a viscoelastic material to control both shear and axial strain. In the design, energy is dissipated through the shear strain of a two-layer system of viscoelastic pads which are located between steel plates. In addition, viscoelastic blocks have been included on either side of the main shear damper which obtains compressive strains in the viscoelastic blocks. These dampers not only dissipate energy but also increase the stiffness of the steel frame structure, and the degree to which they increase the stiffness may be controlled by the size and shape. In this research, the cyclical behavior of the damper was examined both experimentally and numerically with finite element modeling. Cyclic loading results of the finite element modeling reveal fundamental characteristics of this hybrid viscoelastic damper. The results indicate that incorporating a damper of the design can significantly improve the seismic performance of steel frame structures.
Abstract: Standard routes for upgrading existing buildings to improve their seismic response can be expensive in terms of both time and cost due to the modifications required to the foundations. As a result, interest has grown in the installation of viscoelastic dampers (VEDs) in mid and high-rise buildings. Details of a low-cost viscoelastic passive control device, the rotary rubber braced damper (RRBD), are presented in this paper. This design has the added benefits of being lightweight and simple to install. Experimental methods and finite element modeling were used to assess the performance of the proposed VED design and its effect on building response during earthquakes. The analyses took into account the behaviors of non-linear materials and large deformations. The results indicate that the proposed RRBD provides high levels of energy absorption, ensuring the stable cyclical response of buildings in all scenarios considered. In addition, time history analysis was employed in this study to evaluate the RRBD’s ability to control the displacements and accelerations experienced by steel frame structures. It was demonstrated that the device responds well even at low displacements, highlighting its suitability for use in seismic events of varying severity.
Abstract: With the aim of increasing the levels of comfort and security structures, the study of dynamic loads on buildings has been one of the focuses in the area of control engineering, civil engineering and architecture. Thus, this work presents a study based on simulation of the dynamics of buildings in the form of portico subjected to wind action, besides presenting an action of passive control, using for this the dynamics of the structure, consequently representing a system appropriated on environmental issues. These control systems are named the dynamic vibration absorbers.
Abstract: Passive control methods can be utilized to build
earthquake resistant structures, and also to strengthen the vulnerable
ones. In this paper, we studied the effect of this system in increasing
the ductility and energy dissipation and also modeled the behavior of
this type of eccentric bracing, and compared the hysteresis diagram
of the modeled samples with the laboratory samples. We studied
several samples of frames with vertical shear-links in order to assess
the behavior of this type of eccentric bracing. Each of these samples
was modeled in finite element software ANSYS 9.0, and was
analyzed under the static cyclic loading. It was found that vertical
shear-links have a more stable hysteresis loops. Another analysis
showed that using honeycomb beams as the horizontal beam along
with steel reinforcement has no negative effect on the hysteresis
behavior of the sample.
Abstract: This numerical study aims to develop a coupled,
passive and active control strategy of the flow around a cylinder of
diameter D, and Re=4000. The strategy consists to put a cylindrical
rod in front of a deforming cylinder. The quasi- elliptical deformation
of cylinder follow a sinusoidal law in order to reduce the drag force.
To analyze the evolution of unsteady vortices, the Large Eddy
Simulation approach is used in this 2D simulation, carried out using
ANSYS – Fluent. The movement of deformation is reproduced using
an internal subroutine, introduced in the form of a User Defined
Function UDF. Two diameters of the rod were tested for a rod placed
at a distance L = 3 ×d, with an amplitudes of deformation A = 5%, A
= 25% and A = 50% of the cylinder diameter, the frequency of
deformation take the values fd = 1fn, 5fn and 8fn, which fn
represents the naturel vortex shedding frequency. The results show
substantial changes in the flow behavior and for a rod of 6mm (1%
D) with amplitude A = 25%, and with a 2fn frequency, drag
reduction of 60% was recorded.
Abstract: Determination of optimal parameters of a passive
control system device is the primary objective of this study.
Expanding upon the use of control devices in wind and earthquake
hazard reduction has led to development of various control systems.
The advantage of non-linearity characteristics in a passive control
device and the optimal control method using LQR algorithm are
explained in this study. Finally, this paper introduces a simple
approach to determine optimum parameters of a nonlinear viscous
damper for vibration control of structures. A MATLAB program is
used to produce the dynamic motion of the structure considering the
stiffness matrix of the SDOF frame and the non-linear damping
effect. This study concluded that the proposed system (variable
damping system) has better performance in system response control
than a linear damping system. Also, according to the energy
dissipation graph, the total energy loss is greater in non-linear
damping system than other systems.
Abstract: Supersonic open and closed cavity flows are investigated experimentally and computationally. Free stream Mach number of two is set. Schlieren imaging is used to visualise the flow behaviour showing stark differences between open and closed. Computational Fluid Dynamics (CFD) is used to simulate open cavity of flow with aspect ratio of 4. A rear wall treatment is implemented in order to pursue a simple passive control approach. Good qualitative agreement is achieved between the experimental flow visualisation and the CFD in terms of the expansion-shock waves system. The cavity oscillations are shown to be dominated by the first and third Rossister modes combining to high fluctuations of non-linear nature above the cavity rear edge. A simple rear wall treatment in terms of a hole shows mixed effect on the flow oscillations, RMS contours, and time history density fluctuations are given and analysed.
Abstract: The objective of the present paper is a numerical
analysis of the flow forces acting on spool surfaces of a pressure
regulated valve. The transient, compressible and turbulent flow
structures inside the valve are simulated using ANSYS FLUENT
coupled with a special UDF. Here, valve inlet pressure is varied in a
stepwise manner. For every value of inlet pressure, transient analysis
leads to a quasi-static flow through the valve. Spool forces are
calculated based on different pressures at inlet. From this information
of spool forces, pressure characteristic of the passive control circuit
has been derived.
Abstract: In the present paper, active control system is used in
different heights of the building and the most effective part was
studied where the active control system is applied. The mathematical
model of the building is established in MATLAB and in order to
active control the system FLC method was used. Three different
locations of the building are chosen to apply active control system,
namely at the lowest story, the middle height of the building, and at
the highest point of the building with TMD system. The equation of
motion was written for high rise building and it was solved by statespace
method. Also passive control was used with Tuned Mass
Damper (TMD) at the top floor of the building to show the robustness
of FLC method when compared with passive control system.
Abstract: In this study, control performance of a smart base
isolation system consisting of a friction pendulum system (FPS) and a
magnetorheological (MR) damper has been investigated. A fuzzy
logic controller (FLC) is used to modulate the MR damper so as to
minimize structural acceleration while maintaining acceptable base
displacement levels. To this end, a multi-objective optimization
scheme is used to optimize parameters of membership functions and
find appropriate fuzzy rules. To demonstrate effectiveness of the
proposed multi-objective genetic algorithm for FLC, a numerical
study of a smart base isolation system is conducted using several
historical earthquakes. It is shown that the proposed method can find
optimal fuzzy rules and that the optimized FLC outperforms not only a
passive control strategy but also a human-designed FLC and a
conventional semi-active control algorithm.