Abstract: This paper presents the research and application of model predictive scheduled charging of electric vehicles (EV) subject to limited available power resource. To focus on algorithm and operational characteristics, the EV interface to the source is modelled as a battery state equation during the charging operation. The researched methods allow for the priority scheduling of EV charging in a multi-vehicle regime and when subject to limited source power availability. Priority attribution for each connected EV is described. The validity of the developed methodology is shown through the simulation of different scenarios of charging operation of multiple connected EVs including non-scheduled and scheduled operation with various numbers of vehicles. Performance of the developed algorithms is also reported with the recommendation of the choice of suitable parameters.
Abstract: The humanoid robot, specifically the NAO robot must be able to provide a highly dynamic performance on the soccer field. Maintaining the balance of the humanoid robot during the required motion is considered as one of a challenging problems especially when the robot is subject to external disturbances, as contact with other robots. In this paper, a dynamic controller is proposed in order to ensure a robust walking (stabilization) and to improve the dynamic balance of the robot during its contact with the environment (external disturbances). The generation of the trajectory of the center of mass (CoM) is done by a model predictive controller (MPC) conjoined with zero moment point (ZMP) technique. Taking into account the properties of the rotational dynamics of the whole-body system, a modified previous control mixed with feedback control is employed to manage the angular momentum and the CoM’s acceleration, respectively. This latter is dedicated to provide a robust gait of the robot in the presence of the external disturbances. Simulation results are presented to show the feasibility of the proposed strategy.
Abstract: Controlling the flow of fluids is a challenging problem
that arises in many fields. Burgers’ equation is a fundamental
equation for several flow phenomena such as traffic, shock waves,
and turbulence. The optimal feedback control method, so-called
model predictive control, has been proposed for Burgers’ equation.
However, the model predictive control method is inapplicable to
systems whose all state variables are not exactly known. In practical
point of view, it is unusual that all the state variables of systems are
exactly known, because the state variables of systems are measured
through output sensors and limited parts of them can be only
available. In fact, it is usual that flow velocities of fluid systems
cannot be measured for all spatial domains. Hence, any practical
feedback controller for fluid systems must incorporate some type of
state estimator. To apply the model predictive control to the fluid
systems described by Burgers’ equation, it is needed to establish
a state estimation method for Burgers’ equation with limited
measurable state variables. To this purpose, we apply unscented
Kalman filter for estimating the state variables of fluid systems
described by Burgers’ equation. The objective of this study is to
establish a state estimation method based on unscented Kalman filter
for Burgers’ equation. The effectiveness of the proposed method is
verified by numerical simulations.
Abstract: Recently, crystal growth technologies have made
progress by the requirement for the high quality of crystal materials.
To control the crystal growth dynamics actively by external forces
is useuful for reducing composition non-uniformity. In this study,
a control method based on model predictive control using thermal
inputs is proposed for crystal growth dynamics of semiconductor
materials. The control system of crystal growth dynamics considered
here is governed by the continuity, momentum, energy, and mass
transport equations. To establish the control method for such thermal
fluid systems, we adopt model predictive control known as a kind
of optimal feedback control in which the control performance over
a finite future is optimized with a performance index that has a
moving initial time and terminal time. The objective of this study
is to establish a model predictive control method for crystal growth
dynamics of semiconductor materials.
Abstract: In response to widely used wearable medical devices equipped with a continuous glucose monitor (CGM) and insulin pump, the advanced control methods are still demanding to get the full benefit of these devices. Unlike costly clinical trials, implementing effective insulin-glucose control strategies can provide significant contributions to the patients suffering from chronic diseases such as diabetes. This study deals with a key role of two-layer insulin-glucose regulator based on model-predictive-control (MPC) scheme so that the patient’s predicted glucose profile is in compliance with the insulin level injected through insulin pump automatically. It is achieved by iterative optimization algorithm which is called an integrated perturbation analysis and sequential quadratic programming (IPA-SQP) solver for handling uncertainties due to unexpected variations in glucose-insulin values and body’s characteristics. The feasibility evaluation of the discussed control approach is also studied by means of numerical simulations of two case scenarios via measured data. The obtained results are presented to verify the superior and reliable performance of the proposed control scheme with no negative impact on patient safety.
Abstract: A class of implicit systems is known as a more
generalized class of systems than a class of explicit systems. To
establish a control method for such a generalized class of systems, we
adopt model predictive control method which is a kind of optimal
feedback control with a performance index that has a moving
initial time and terminal time. However, model predictive control
method is inapplicable to systems whose all state variables are not
exactly known. In other words, model predictive control method is
inapplicable to systems with limited measurable states. In fact, it
is usual that the state variables of systems are measured through
outputs, hence, only limited parts of them can be used directly. It is
also usual that output signals are disturbed by process and sensor
noises. Hence, it is important to establish a state estimation method
for nonlinear implicit systems with taking the process noise and
sensor noise into consideration. To this purpose, we apply the model
predictive control method and unscented Kalman filter for solving
the optimization and estimation problems of nonlinear implicit
systems, respectively. The objective of this study is to establish a
model predictive control with unscented Kalman filter for nonlinear
implicit systems.
Abstract: The random dither quantization method enables us
to achieve much better performance than the simple uniform
quantization method for the design of quantized control systems.
Motivated by this fact, the stochastic model predictive control
method in which a performance index is minimized subject to
probabilistic constraints imposed on the state variables of systems
has been proposed for linear feedback control systems with random
dither quantization. In other words, a method for solving optimal
control problems subject to probabilistic state constraints for linear
discrete-time control systems with random dither quantization has
been already established. To our best knowledge, however, the
feasibility of such a kind of optimal control problems has not
yet been studied. Our objective in this paper is to investigate the
feasibility of stochastic model predictive control problems for linear
discrete-time control systems with random dither quantization. To
this end, we provide the results of numerical simulations that verify
the feasibility of stochastic model predictive control problems for
linear discrete-time control systems with random dither quantization.
Abstract: This paper presents a virtual active power filter (VAPF) using vehicle to grid (V2G) technology to maintain power quality requirements. The optimal discrete operation of the power converter of electric vehicle (EV) is based on recognizing desired switching states using the model predictive control (MPC) algorithm. A fast dynamic response, lower total harmonic distortion (THD) and good reference tracking performance are realized through the presented control strategy. The simulation results using MATLAB/Simulink validate the effectiveness of the scheme in improving power quality as well as good dynamic response in power transferring capability.
Abstract: In this paper, the problem of robust model predictive control (MPC) for discrete-time linear systems in linear fractional transformation form with structured uncertainty and norm-bounded disturbance is investigated. The problem of minimization of the cost function for MPC design is converted to minimization of the worst case of the cost function. Then, this problem is reduced to minimization of an upper bound of the cost function subject to a terminal inequality satisfying the l2-norm of the closed loop system. The characteristic of the linear fractional transformation system is taken into account, and by using some mathematical tools, the robust predictive controller design problem is turned into a linear matrix inequality minimization problem. Afterwards, a formulation which includes an integrator to improve the performance of the proposed robust model predictive controller in steady state condition is studied. The validity of the approaches is illustrated through a robust control benchmark problem.
Abstract: In this paper, a sampled-data model predictive tracking
control method is presented for mobile robots which is modeled as
constrained continuous-time linear parameter varying (LPV) systems.
The presented sampled-data predictive controller is designed by linear
matrix inequality approach. Based on the input delay approach, a
controller design condition is derived by constructing a new Lyapunov
function. Finally, a numerical example is given to demonstrate the
effectiveness of the presented method.
Abstract: This paper presents a wind turbine based on the doubly fed induction generator (DFIG) connected to the utility grid through a shunt active power filter (SAPF). The whole system is controlled by a double nonlinear predictive controller (DNPC). A Taylor series expansion is used to predict the outputs of the system. The control law is calculated by optimization of the cost function. The first nonlinear predictive controller (NPC) is designed to ensure the high performance tracking of the rotor speed and regulate the rotor current of the DFIG, while the second one is designed to control the SAPF in order to compensate the harmonic produces by the three-phase diode bridge supplied by a passive circuit (rd, Ld). As a result, we obtain sinusoidal waveforms of the stator voltage and stator current. The proposed nonlinear predictive controllers (NPCs) are validated via simulation on a 1.5 MW DFIG-based wind turbine connected to an SAPF. The results obtained appear to be satisfactory and promising.
Abstract: The article presents an application of Fractional Model Predictive Control (FMPC) to a fractional order thermal system using Controlled Auto Regressive Integrated Moving Average (CARIMA) model obtained by discretization of a continuous fractional differential equation. Moreover, the output deviation approach is exploited to design the K -step ahead output predictor, and the corresponding control law is obtained by solving a quadratic cost function. Experiment results onto a thermal system are presented to emphasize the performances and the effectiveness of the proposed predictive controller.
Abstract: This paper describes a strategy to develop an energy
management system (EMS) for a charge-sustaining power-split hybrid
electric vehicle. This kind of hybrid electric vehicles (HEVs) benefit
from the advantages of both parallel and series architecture. However,
it gets relatively more complicated to manage power flow between the
battery and the engine optimally. The applied strategy in this paper is
based on nonlinear model predictive control approach. First of all, an
appropriate control-oriented model which was accurate enough and
simple was derived. Towards utilization of this controller in real-time,
the problem was solved off-line for a vast area of reference signals
and initial conditions and stored the computed manipulated variables
inside look-up tables. Look-up tables take a little amount of memory.
Also, the computational load dramatically decreased, because to find
required manipulated variables the controller just needed a simple
interpolation between tables.
Abstract: Recently, feedback control systems using random dither
quantizers have been proposed for linear discrete-time systems.
However, the constraints imposed on state and control variables
have not yet been taken into account for the design of feedback
control systems with random dither quantization. Model predictive
control is a kind of optimal feedback control in which control
performance over a finite future is optimized with a performance
index that has a moving initial and terminal time. An important
advantage of model predictive control is its ability to handle
constraints imposed on state and control variables. Based on the
model predictive control approach, the objective of this paper is to
present a control method that satisfies probabilistic state constraints
for linear discrete-time feedback control systems with random dither
quantization. In other words, this paper provides a method for
solving the optimal control problems subject to probabilistic state
constraints for linear discrete-time feedback control systems with
random dither quantization.
Abstract: Recent technological advance has prompted significant
interest in developing the control theory of quantum systems.
Following the increasing interest in the control of quantum
dynamics, this paper examines the control problem of Schrödinger
equation because quantum dynamics is basically governed by
Schrödinger equation. From the practical point of view, stochastic
disturbances cannot be avoided in the implementation of control
method for quantum systems. Thus, we consider here the robust
stabilization problem of Schrödinger equation against stochastic
disturbances. In this paper, we adopt model predictive control method
in which control performance over a finite future is optimized with
a performance index that has a moving initial and terminal time.
The objective of this study is to derive the stability criterion for
model predictive control of Schrödinger equation under stochastic
disturbances.
Abstract: In connected vehicle systems where wireless communication is available among the involved vehicles and intersection controllers, it is possible to design an intersection coordination strategy that leads the connected and automated vehicles (CAVs) travel through the road intersections without the conventional traffic light control. In this paper, we present a distributed coordination strategy for the CAVs at multiple interconnected intersections that aims at improving system fuel efficiency and system mobility. We present a distributed control solution where in the higher level, the intersection controllers calculate the road desired average velocity and optimally assign reference velocities of each vehicle. In the lower level, every vehicle is considered to use model predictive control (MPC) to track their reference velocity obtained from the higher level controller. The proposed method has been implemented on a simulation-based case with two-interconnected intersection network. Additionally, the effects of mixed vehicle types on the coordination strategy has been explored. Simulation results indicate the improvement on vehicle fuel efficiency and traffic mobility of the proposed method.
Abstract: This paper treats a design of combined control of a
single phase power factor correction (PFC). The strategy of the
proposed control is based on two parts, the first, for the outer loop
(DC output regulated voltage), and the second govern the input
current of the converter in order to achieve a sinusoidal form in phase
with the grid voltage. Two kinds of regulators are used, Fuzzy
controller for the outer loop and predictive controller for the inner
loop. The controllers are verified and discussed through simulation
under MATLAB/Simulink platform. Also an experimental
confirmation is applied. Results present a high dynamic performance
under various parameters changes.
Abstract: Control of diesel engine’s air path has drawn a lot of attention due to its multi input-multi output, closed coupled, non-linear relation. Today, precise control of amount of air to be combusted is a must in order to meet with tight emission limits and performance targets. In this study, passenger car size diesel engine is modeled by AVL Boost RT, and then simulated with standard, industry level PID controllers. Finally, linear model predictive control is designed and simulated. This study shows the importance of modeling and control of diesel engines with flexible algorithm development in computer based systems.
Abstract: With 40% of total world energy consumption,
building systems are developing into technically complex large
energy consumers suitable for application of sophisticated power
management approaches to largely increase the energy efficiency
and even make them active energy market participants. Centralized
control system of building heating and cooling managed by
economically-optimal model predictive control shows promising
results with estimated 30% of energy efficiency increase. The research
is focused on implementation of such a method on a case study
performed on two floors of our faculty building with corresponding
sensors wireless data acquisition, remote heating/cooling units and
central climate controller. Building walls are mathematically modeled
with corresponding material types, surface shapes and sizes. Models
are then exploited to predict thermal characteristics and changes in
different building zones. Exterior influences such as environmental
conditions and weather forecast, people behavior and comfort
demands are all taken into account for deriving price-optimal climate
control. Finally, a DC microgrid with photovoltaics, wind turbine,
supercapacitor, batteries and fuel cell stacks is added to make the
building a unit capable of active participation in a price-varying
energy market. Computational burden of applying model predictive
control on such a complex system is relaxed through a hierarchical
decomposition of the microgrid and climate control, where the
former is designed as higher hierarchical level with pre-calculated
price-optimal power flows control, and latter is designed as lower
level control responsible to ensure thermal comfort and exploit
the optimal supply conditions enabled by microgrid energy flows
management. Such an approach is expected to enable the inclusion
of more complex building subsystems into consideration in order to
further increase the energy efficiency.
Abstract: This paper presents a model predictive control (MPC)
of a utility interactive three phase inverter (TPI) for a photovoltaic
(PV) system at commercial level. The proposed model uses phase
locked loop (PLL) to synchronize the TPI with the power electric
grid (PEG) and performs MPC control in a dq reference frame. TPI
model consists of a boost converter (BC), maximum power point
tracking (MPPT) control, and a three-leg voltage source inverter
(VSI). The operational model of VSI is used to synthesize the
sinusoidal current and track the reference. The model is validated
using a 35.7 kW PV system in Matlab/Simulink. Implementation
results show simplicity and accuracy, as well as reliability of the
model.