Abstract: This paper describes the effects of photovoltaic voltage changes on Multi-level inverter (MLI) due to solar irradiation variations, and methods to overcome these changes. The irradiation variation affects the generated voltage, which in turn varies the switching angles required to turn-on the inverter power switches in order to obtain minimum harmonic content in the output voltage profile. Genetic Algorithm (GA) is used to solve harmonics elimination equations of eleven level inverters with equal and non-equal dc sources. After that artificial neural network (ANN) algorithm is proposed to generate appropriate set of switching angles for MLI at any level of input dc sources voltage causing minimization of the total harmonic distortion (THD) to an acceptable limit. MATLAB/Simulink platform is used as a simulation tool and Fast Fourier Transform (FFT) analyses are carried out for output voltage profile to verify the reliability and accuracy of the applied technique for controlling the MLI harmonic distortion. According to the simulation results, the obtained THD for equal dc source is 9.38%, while for variable or unequal dc sources it varies between 10.26% and 12.93% as the input dc voltage varies between 4.47V nd 11.43V respectively. The proposed ANN algorithm provides satisfied simulation results that match with results obtained by alternative algorithms.
Abstract: This paper presents a virtual active power filter (VAPF) using vehicle to grid (V2G) technology to maintain power quality requirements. The optimal discrete operation of the power converter of electric vehicle (EV) is based on recognizing desired switching states using the model predictive control (MPC) algorithm. A fast dynamic response, lower total harmonic distortion (THD) and good reference tracking performance are realized through the presented control strategy. The simulation results using MATLAB/Simulink validate the effectiveness of the scheme in improving power quality as well as good dynamic response in power transferring capability.
Abstract: The global energy consumption is increasing persistently and need for distributed power generation through renewable energy is essential. To meet the power requirements for consumers without any voltage fluctuations and losses, modeling and design of multilevel inverter with Flexible AC Transmission System (FACTS) capability is presented. The presented inverter is provided with 13-level cascaded H-bridge topology of Insulated Gate Bipolar Transistor (IGBTs) connected along with inbuilt Distributed Static Synchronous Compensators (DSTATCOM). The DSTATCOM device provides control of power factor stability at local feeder lines and the inverter eliminates Total Harmonic Distortion (THD). The 13-level inverter utilizes 52 switches of each H-bridge is fed with single DC sources separately and the Pulse Width Modulation (PWM) technique is used for switching IGBTs. The control strategy implemented for inverter transmits active power to grid as well as it maintains power factor to be stable with achievement of steady state power transmission. Significant outcome of this project is improvement of output voltage quality with steady state power transmission with low THD. Simulation of inverter with DSTATCOM is performed using MATLAB/Simulink environment. The scaled prototype model of proposed inverter is built and its results were validated with simulated results.
Abstract: This paper presents Buck-Boost converter topology to maintain the input power factor by using the power factor stage control and regulation stage control. Suppose, if we are using the RL load the power factor will be reduced due to the presence of total harmonic distortion in the current wave. To improve the power factor the current waveform should follow the fundamental component of the voltage waveform. These can be achieved by using the high -frequency power converter. Based on the resonant circuit the converter is able to perform the function of Buck, Boost, and buck-boost converter. Here ,we have used Buck-Boost converter, because, the buck-boost converter has more advantages than the boost converter. Here the switching action of the power converter can take place by using the external zero comparator PFC stage control. The power converter consisting of the resonant circuit which is used to control the output voltage gain of the converter. The power converter is operated at a very high switching frequency in the range of 400KHz in order to overcome the switching losses of the power converter. Due to presence of high switching frequency, the power factor will improve. Therefore, the total harmonics distortion present in the current waveform has also reduced. These results has generated in the form of simulation by using MATLAB/SIMULINK software. Similar to the Buck and Boost converters, the operation of the Buck-Boost has best understood, in terms of the inductor's "reluctance" for allowing rapid change in current, which also reduces the Total Harmonic Distortion (THD) in the input current waveform, which can improve the input Power factor, based on the type of load used.
Abstract: Carrier-based methods have been used widely for switching of multilevel inverters due to their simplicity, flexibility and reduced computational requirements compared to space vector modulation (SVM). This paper focuses on Multicarrier Sinusoidal Pulse Width Modulation (MCSPWM) strategy for the three phase Five-Level Flying Capacitor Inverter (5LFCI). The inverter is simulated for Induction Motor (IM) load and Total Harmonic Distortion (THD) for output waveforms is observed for different controlling schemes.
Abstract: In this paper, influence of harmonics on medium
voltage distribution system of Bogazici Electricity Distribution Inc.
(BEDAS) which takes place at Istanbul/Turkey is investigated. A ring
network consisting of residential loads is taken into account for this
study. Real system parameters and measurement results are used for
simulations. Also, probable working conditions of the system are
analyzed for 50%, 75%, and 100% loading of transformers with
similar harmonic contents. Results of the study are exhibited the
influence of nonlinear loads on %THDV, P.F. and technical losses of
the medium voltage distribution system.
Abstract: Multi-Level Inverter technology has been developed in the area of high-power medium-voltage energy scheme, because of their advantages such as devices of lower rating can be used thereby enabling the schemes to be used for high voltage applications. Reduced Total Harmonic Distortion (THD).Since the dv/dt is low; the Electromagnetic Interference from the scheme is low. To avoid the switching losses Lower switching frequencies can be used. In this paper present a survey of various topologies, control strategy and modulation techniques used by these inverters. Here the regenerative and superior topologies are also discussed.
Abstract: This paper presents the simulation results of the
effects of sampling frequency on the total harmonic distortion (THD)
of three-phase inverters using the space vector pulse width
modulation (SVPWM) and space vector control (SVC) algorithms.
The relationship between the variables was studied using curve fitting
techniques, and it has been shown that, for 50 Hz inverters, there is
an exponential relation between the sampling frequency and THD up
to around 8500 Hz, beyond which the performance of the model
becomes irregular, and there is an negative exponential relation
between the sampling frequency and the marginal improvement to
the THD. It has also been found that the performance of SVPWM is
better than that of SVC with the same sampling frequency in most
frequency range, including the range where the performance of the
former is irregular.
Abstract: With advances in solid-state power electronic devices
and microprocessors, various pulse-width-modulation (PWM)
techniques have been developed for industrial applications. This
paper presents the comparison of two different PWM techniques, the
sinusoidal PWM (SPWM) technique and the space-vector PWM
(SVPWM) technique applied to two level VSI for micro grid
applications. These two methods are compared by discussing their
ease of implementation and by analyzing the output harmonic spectra
of various output voltages (line-to-neutral voltages, and line-to-line
voltages) and their total harmonic distortion (THD). The SVPWM
technique in the under-modulation region can increase the
fundamental output voltage by 15.5% over the SPWM technique.
Abstract: In this paper, we present a comparative assessment of
Space Vector Pulse Width Modulation (SVPWM) and Model
Predictive Control (MPC) for two-level three phase (2L-3P) Voltage
Source Inverter (VSI). VSI with associated system is subjected to
both control techniques and the results are compared.
Matlab/Simulink was used to model, simulate and validate the
control schemes. Findings of this study show that MPC is superior to
SVPWM in terms of total harmonic distortion (THD) and
implementation.
Abstract: Multilevel inverters such as flying capacitor, diodeclamped,
and cascaded H-bridge inverters are very popular
particularly in medium and high power applications. This paper
focuses on a cascaded H-bridge module using a single direct current
(DC) source in order to generate an 11-level output voltage. The
noble approach reduces the number of switches and gate drivers, in
comparison with a conventional method. The anticipated topology
produces more accurate result with an isolation transformer at high
switching frequency. Different modulation techniques can be used for
the multilevel inverter, but this work features modulation techniques
known as selective harmonic elimination (SHE).This modulation
approach reduces the number of carriers with reduction in Switching
Losses, Total Harmonic Distortion (THD), and thereby increasing
Power Quality (PQ). Based on the simulation result obtained, it
appears SHE has the ability to eliminate selected harmonics by
chopping off the fundamental output component. The performance
evaluation of the proposed cascaded multilevel inverter is performed
using PSIM simulation package and THD of 0.94% is obtained.
Abstract: This paper is based on the bridgeless single-phase Ac–Dc Power Factor Correction (PFC) converters with Fuzzy Logic Controller. High frequency isolated Cuk converters are used as a modular dc-dc converter in Discontinuous Conduction Mode (DCM) of operation of Power Factor Correction. The aim of this paper is to simplify the program complexity of the controller by reducing the number of fuzzy sets of the Membership Functions (MFs) and to improve the efficiency and to eliminate the power quality problems. The output of Fuzzy controller is compared with High frequency triangular wave to generate PWM gating signals of Cuk converter. The proposed topologies are designed to work in Discontinuous Conduction Mode (DCM) to achieve a unity power factor and low total harmonic distortion of the input current. The Fuzzy Logic Controller gives additional advantages such as accurate result, uncertainty and imprecision and automatic control circuitry. Performance comparisons between the proposed and conventional controllers and circuits are performed based on circuit simulations.
Abstract: Distributed Generation (DG) systems are considered an integral part in future distribution system planning. Appropriate size and location of distributed generation plays a significant role in minimizing power losses in distribution systems. Among the benefits of distributed generation is the reduction in active power losses, which can improve the system performance, reliability and power quality. In this paper, Artificial Bee Colony (ABC) algorithm is proposed to determine the optimal DG-unit size and location by loss sensitivity index in order to minimize the real power loss, total harmonic distortion (THD) and voltage sag index improvement. Simulation study is conducted on 69-bus radial test system to verify the efficacy of the proposed method.
Abstract: Active power filter continues to be a powerful tool to control harmonics in power systems thereby enhancing the power quality. This paper presents a fuzzy tuned PID controller based shunt active filter to diminish the harmonics caused by non linear loads like thyristor bridge rectifiers and imbalanced loads. Here Fuzzy controller provides the tuning of PID, based on firing of thyristor bridge rectifiers and variations in input rms current. The shunt APF system is implemented with three phase current controlled Voltage Source Inverter (VSI) and is connected at the point of common coupling for compensating the current harmonics by injecting equal but opposite filter currents. These controllers are capable of controlling dc-side capacitor voltage and estimating reference currents. Hysteresis Current Controller (HCC) is used to generate switching signals for the voltage source inverter. Simulation studies are carried out with non linear loads like thyristor bridge rectifier along with unbalanced loads and the results proved that the APF along with fuzzy tuned PID controller work flawlessly for different firing angles of non linear load.
Abstract: This paper presents a pulse doubling technique in a 12-pulse ac-dc converter which supplies direct torque controlled motor drives (DTCIMD-s) in order to have better power quality conditions at the point of common coupling. The proposed technique increases the number of rectification pulses without significant changes in the installations and yields in harmonic reduction in both ac and dc sides. The 12-pulse rectified output voltage is accomplished via two paralleled six-pulse ac-dc converters each of them consisting of three-phase diode bridge rectifier. An autotransformer is designed to supply the rectifiers. The design procedure of magnetics is in a way such that makes it suitable for retrofit applications where a six-pulse diode bridge rectifier is being utilized. Independent operation of paralleled diode-bridge rectifiers, i.e. dc-ripple re-injection methodology, requires a Zero Sequence Blocking Transformer (ZSBT). Finally, a tapped interphase reactor is connected at the output of ZSBT to double the pulse numbers of output voltage up to 24 pulses. The aforementioned structure improves power quality criteria at ac mains and makes them consistent with the IEEE-519 standard requirements for varying loads. Furthermore, near unity power factor is obtained for a wide range of DTCIMD operation. A comparison is made between 6- pulse, 12-pulse, and proposed converters from view point of power quality indices. Results show that input current total harmonic distortion (THD) is less than 5% for the proposed topology at various loads.
Abstract: A new low-voltage floating gate MOSFET (FGMOS)
based squarer using square law characteristic of the FGMOS is
proposed in this paper. The major advantages of the squarer are simplicity,
rail-to-rail input dynamic range, low total harmonic distortion,
and low power consumption. The proposed circuit is biased without
body effect. The circuit is designed and simulated using SPICE in
0.25μm CMOS technology. The squarer is operated at the supply
voltages of ±0.75V . The total harmonic distortion (THD) for the
input signal 0.75Vpp at 25 KHz, and maximum power consumption
were found to be less than 1% and 319μW respectively.
Abstract: This paper present the harmonic elimination of hybrid
multilevel inverters (HMI) which could be increase the number of
output voltage level. Total Harmonic Distortion (THD) is one of the
most important requirements concerning performance indices.
Because of many numbers output levels of HMI, it had numerous
unknown variables of eliminate undesired individual harmonic and
THD nonlinear equations set. Optimized harmonic stepped waveform
(OHSW) is solving switching angles conventional method, but most
complicated for solving as added level. The artificial intelligent
techniques are deliberation to solve this problem. This paper presents
the Particle Swarm Optimization (PSO) technique for solving
switching angles to get minimum THD and eliminate undesired
individual harmonics of 15-levels hybrid multilevel inverters.
Consequently it had many variables and could eliminate numerous
harmonics. Both advantages including high level of inverter and
Particle Swarm Optimization (PSO) are used as powerful tools for
harmonics elimination.
Abstract: Properly sized capacitor banks are connected across induction motors for several reasons including power factor correction, reducing distortions, increasing capacity, etc. Total harmonic distortion (THD) and power factor (PF) are used in such cases to quantify the improvements obtained through connection of the external capacitor banks. On the other hand, one of the methods for assessing the motor internal condition is by the use of Park-s pattern analysis. In spite of taking adequate precautionary measures, the capacitor banks may sometimes malfunction. Such a minor fault in the capacitor bank is often not apparently discernible. This may however, give rise to substantial degradation of power factor correction performance and may also damage the supply profile. The case is more severe with the fact that the Park-s pattern gets distorted due to such external capacitor faults, and can give anomalous results about motor internal fault analyses. The aim of this paper is to present simulation and hardware laboratory test results to have an understanding of the anomalies in harmonic distortion and Park-s pattern analyses in induction motors due to capacitor bank defects.
Abstract: Multi-level voltage source inverters offer several
advantages such as; derivation of a refined output voltage with
reduced total harmonic distortion (THD), reduction of voltage ratings
of the power semiconductor switching devices and also the reduced
electro-magnetic-interference problems etc. In this paper, new
carrier-overlapped phase-disposition or sub-harmonic sinusoidal
pulse width modulation (CO-PD-SPWM) and also the carrieroverlapped
phase-disposition space vector modulation (CO-PDSVPWM)
schemes for a six-level diode-clamped inverter topology
are proposed. The principle of the proposed PWM schemes is similar
to the conventional PD-PWM with a little deviation from it in the
sense that the triangular carriers are all overlapped. The overlapping
of the triangular carriers on one hand results in an increased number
of switchings, on the other hand this facilitates an improved spectral
performance of the output voltage. It is demonstrated through
simulation studies that the six-level diode-clamped inverter with the
use of CO-PD-SPWM and CO-PD-SVPWM proposed in this paper is
capable of generating multiple levels in its output voltage. The
advantages of the proposed PWM schemes can be derived to benefit,
especially at lower modulation indices of the inverter and hence this
aspect of the proposed PWM schemes can be well exploited in high
power applications requiring low speeds of operation of the drive.
Abstract: A 10bit, 40 MSps, sample and hold, implemented in 0.18-μm CMOS technology with 3.3V supply, is presented for application in the front-end stage of an analog-to-digital converter. Topology selection, biasing, compensation and common mode feedback are discussed. Cascode technique has been used to increase the dc gain. The proposed opamp provides 149MHz unity-gain bandwidth (wu), 80 degree phase margin and a differential peak to peak output swing more than 2.5v. The circuit has 55db Total Harmonic Distortion (THD), using the improved fully differential two stage operational amplifier of 91.7dB gain. The power dissipation of the designed sample and hold is 4.7mw. The designed system demonstrates relatively suitable response in different process, temperature and supply corners (PVT corners).