Abstract: This paper presents a model predictive control (MPC)
of a utility interactive (UI) single phase inverter (SPI) for a
photovoltaic (PV) system at residential/distribution level. The
proposed model uses single-phase phase locked loop (PLL) to
synchronize SPI with the grid and performs MPC control in a dq
reference frame. SPI model consists of boost converter (BC),
maximum power point tracking (MPPT) control, and a full bridge
(FB) voltage source inverter (VSI). No PI regulators to tune and
carrier and modulating waves are required to produce switching
sequence. Instead, the operational model of VSI is used to synthesize
sinusoidal current and track the reference. Model is validated using a
three kW PV system at the input of UI-SPI in Matlab/Simulink.
Implementation and results demonstrate simplicity and accuracy, as
well as reliability of the model.
Abstract: This paper presents a comparison between two Pulse
Width Modulation (PWM) algorithms applied to a three-level Neutral
Point Clamped (NPC) Voltage Source Inverter (VSI). The first
algorithm applied is the triangular-sinusoidal strategy; the second is
the Space Vector Pulse Width Modulation (SVPWM) strategy. In the
first part, we present a topology of three-level NCP VSI. After that,
we develop the two PWM strategies to control this converter. At the
end the experimental results are presented.
Abstract: Active power filter continues to be a powerful tool to control harmonics in power systems thereby enhancing the power quality. This paper presents a fuzzy tuned PID controller based shunt active filter to diminish the harmonics caused by non linear loads like thyristor bridge rectifiers and imbalanced loads. Here Fuzzy controller provides the tuning of PID, based on firing of thyristor bridge rectifiers and variations in input rms current. The shunt APF system is implemented with three phase current controlled Voltage Source Inverter (VSI) and is connected at the point of common coupling for compensating the current harmonics by injecting equal but opposite filter currents. These controllers are capable of controlling dc-side capacitor voltage and estimating reference currents. Hysteresis Current Controller (HCC) is used to generate switching signals for the voltage source inverter. Simulation studies are carried out with non linear loads like thyristor bridge rectifier along with unbalanced loads and the results proved that the APF along with fuzzy tuned PID controller work flawlessly for different firing angles of non linear load.
Abstract: Space Vector Modulation (SVM) is an optimum Pulse Width Modulation (PWM) technique for an inverter used in a variable frequency drive applications. It is computationally rigorous and hence limits the inverter switching frequency. Increase in switching frequency can be achieved using Neural Network (NN) based SVM, implemented on application specific chips. This paper proposes a neural network based SVM technique for a Voltage Source Inverter (VSI). The network proposed is independent of switching frequency. Different architectures are investigated keeping the total number of neurons constant. The performance of the inverter is compared for various switching frequencies for different architectures of NN based SVM. From the results obtained, the network with minimum resource and appropriate word length is identified. The bit precision required for this application is identified. The network with 8-bit precision is implemented in the IC XCV 400 and the results are presented. The performance of NN based general purpose SVM with higher bit precision is discussed.