Abstract: During the recent years, much interest has been devoted to fractional order control that has appeared as a very eligible control approach for the systems experiencing parametric uncertainty and outer disturbances. The main purpose of this paper is to design and evaluate the performance of a fractional order proportional integral (FOPI) controller applied to control prototype variable speed wind generation system (WGS) that uses a doubly fed induction generator (DFIG). In this paper, the DFIG-machine is controlled according to the stator field-oriented control (FOC) strategy, which makes it possible to regulate separately the reactive and active powers exchanged between the WGS and the grid. The considered system is modeled and simulated using MATLAB-Simulink, and the performance of FOPI controller applied to the back-to-back power converter control of DFIG based grid connected variable speed wind turbine are evaluated and compared to the ones obtained with a conventional PI controller.
Abstract: This paper presents a nonlinear differential model,
for a three-bladed horizontal axis wind turbine (HAWT) suited
for control applications. It is based on a 8-dofs, lumped
parameters structural dynamics coupled with a quasi-steady sectional
aerodynamics. In particular, using the Euler-Lagrange Equation
(Energetic Variation approach), the authors derive, and successively
validate, such model. For the derivation of the aerodynamic model,
the Greenbergs theory, an extension of the theory proposed by
Theodorsen to the case of thin airfoils undergoing pulsating flows,
is used. Specifically, in this work, the authors restricted that theory
under the hypothesis of low perturbation reduced frequency k,
which causes the lift deficiency function C(k) to be real and equal
to 1. Furthermore, the expressions of the aerodynamic loads are
obtained using the quasi-steady strip theory (Hodges and Ormiston),
as a function of the chordwise and normal components of relative
velocity between flow and airfoil Ut, Up, their derivatives, and
section angular velocity ε˙. For the validation of the proposed model,
the authors carried out open and closed-loop simulations of a 5
MW HAWT, characterized by radius R =61.5 m and by mean chord
c = 3 m, with a nominal angular velocity Ωn = 1.266rad/sec.
The first analysis performed is the steady state solution, where
a uniform wind Vw = 11.4 m/s is considered and a collective
pitch angle θ = 0.88◦ is imposed. During this step, the authors
noticed that the proposed model is intrinsically periodic due to
the effect of the wind and of the gravitational force. In order
to reject this periodic trend in the model dynamics, the authors
propose a collective repetitive control algorithm coupled with a PD
controller. In particular, when the reference command to be tracked
and/or the disturbance to be rejected are periodic signals with a
fixed period, the repetitive control strategies can be applied due to
their high precision, simple implementation and little performance
dependency on system parameters. The functional scheme of a
repetitive controller is quite simple and, given a periodic reference
command, is composed of a control block Crc(s) usually added
to an existing feedback control system. The control block contains
and a free time-delay system eτs in a positive feedback loop, and a
low-pass filter q(s). It should be noticed that, while the time delay
term reduces the stability margin, on the other hand the low pass
filter is added to ensure stability. It is worth noting that, in this
work, the authors propose a phase shifting for the controller and
the delay system has been modified as e^(−(T−γk)), where T is the
period of the signal and γk is a phase shifting of k samples of the
same periodic signal. It should be noticed that, the phase shifting
technique is particularly useful in non-minimum phase systems, such
as flexible structures. In fact, using the phase shifting, the iterative
algorithm could reach the convergence also at high frequencies.
Notice that, in our case study, the shifting of k samples depends
both on the rotor angular velocity Ω and on the rotor azimuth
angle Ψ: we refer to this controller as a spatial repetitive controller.
The collective repetitive controller has also been coupled with a C(s) = PD(s), in order to dampen oscillations of the blades.
The performance of the spatial repetitive controller is compared
with an industrial PI controller. In particular, starting from wind
speed velocity Vw = 11.4 m/s the controller is asked to maintain the
nominal angular velocity Ωn = 1.266rad/s after an instantaneous
increase of wind speed (Vw = 15 m/s). Then, a purely periodic
external disturbance is introduced in order to stress the capabilities
of the repetitive controller. The results of the simulations show that,
contrary to a simple PI controller, the spatial repetitive-PD controller
has the capability to reject both external disturbances and periodic
trend in the model dynamics. Finally, the nominal value of the
angular velocity is reached, in accordance with results obtained with
commercial software for a turbine of the same type.
Abstract: This paper describes a simple way to control the speed
of PMBLDC motor using Fuzzy logic control method. In the
conventional PI controller the performance of the motor system is
simulated and the speed is regulated by using PI controller. These
methods used to improve the performance of PMSM drives, but in
some cases at different operating conditions when the dynamics of
the system also vary over time and it can change the reference speed,
parameter variations and the load disturbance. The simulation is
powered with the MATLAB program to get a reliable and flexible
simulation. In order to highlight the effectiveness of the speed control
method the FLC method is used. The proposed method targeted in
achieving the improved dynamic performance and avoids the
variations of the motor drive. This drive has high accuracy, robust
operation from near zero to high speed. The effectiveness and
flexibility of the individual techniques of the speed control method
will be thoroughly discussed for merits and demerits and finally
verified through simulation and experimental results for comparative
analysis.
Abstract: Brushless DC motors (BLDC) are widely used in
industrial areas. The BLDC motors are driven either by indirect ACAC
converters or by direct AC-AC converters. Direct AC-AC
converters i.e. matrix converters are used in this paper to drive the
three phase BLDC motor and it eliminates the bulky DC link energy
storage element. A matrix converter converts the AC power supply to
an AC voltage of variable amplitude and variable frequency. A
control technique is designed to generate the switching pulses for the
three phase matrix converter. For the control of speed of the BLDC
motor a separate PI controller and Fuzzy Logic Controller (FLC) are
designed and a hysteresis current controller is also designed for the
control of motor torque. The control schemes are designed and tested
separately. The simulation results of both the schemes are compared
and contrasted in this paper. The results show that the fuzzy logic
control scheme outperforms the PI control scheme in terms of
dynamic performance of the BLDC motor. Simulation results are
validated with the experimental results.
Abstract: The controller is used to improve the dynamic performance of DC-DC converter by achieving a robust output voltage against load disturbances. This paper presents the performance of PI and Fuzzy controller for a phase- shifted zero-voltage switched full-bridge PWM (ZVS FB- PWM) converters with a closed loop control. The proposed converter is regulated with minimum overshoot and good stability. In this paper phase-shift control method is used as an effective tool to reduce switching losses and duty cycle losses. A 1kW/100KHz dc/dc converter is simulated and analyzed using MATLAB. The circuit is simulated for static and dynamic load (DC motor). It has been observed that performance of converter with fuzzy controller is better than that of PI controller. An efficiency comparison of the converter with a reported topology has also been carried out.
Abstract: The optimal design of PI controller for Automatic Generation Control in two area is presented in this paper. The concept of Dual mode control is applied in the PI controller, such that the proportional mode is made active when the rate of change of the error is sufficiently larger than a specified limit otherwise switched to the integral mode. A digital simulation is used in conjunction with the Hooke-Jeeve’s optimization technique to determine the optimum parameters (individual gain of proportional and integral controller) of the PI controller. Integrated Square of the Error (ISE), Integrated Time multiplied by Absolute Error(ITAE) , and Integrated Absolute Error(IAE) performance indices are considered to measure the appropriateness of the designed controller. The proposed controller are tested for a two area single nonreheat thermal system considering the practical aspect of the problem such as Deadband and Generation Rate Constraint(GRC). Simulation results show that dual mode with optimized values of the gains improved the control performance than the commonly used Variable Structure .
Abstract: This paper puts forward one kind of air-fuel ratio
control method with PI controller. With the help of
MATLAB/SIMULINK software, the mathematical model of air-fuel
ratio control system for distributorless CNG engine is constructed.
The objective is to maintain cylinder-to-cylinder air-fuel ratio at a
prescribed set point, determined primarily by the state of the Three-
Way-Catalyst (TWC), so that the pollutants in the exhaust are
removed with the highest efficiency. The concurrent control of airfuel
under transient conditions could be implemented by Proportional
and Integral (PI) controller. The simulation result indicates that the
control methods can easily eliminate the air/fuel maldistribution and
maintain the air/fuel ratio at the stochiometry within minimum
engine events.
Abstract: The paper presents an investigation in to the effect of neural network predictive control of UPFC on the transient stability performance of a multimachine power system. The proposed controller consists of a neural network model of the test system. This model is used to predict the future control inputs using the damped Gauss-Newton method which employs ‘backtracking’ as the line search method for step selection. The benchmark 2 area, 4 machine system that mimics the behavior of large power systems is taken as the test system for the study and is subjected to three phase short circuit faults at different locations over a wide range of operating conditions. The simulation results clearly establish the robustness of the proposed controller to the fault location, an increase in the critical clearing time for the circuit breakers, and an improved damping of the power oscillations as compared to the conventional PI controller.
Abstract: The highly nonlinear characteristics of drying
processes have prompted researchers to seek new nonlinear control
solutions. However, the relation between the implementation
complexity, on-line processing complexity, reliability control
structure and controller-s performance is not well established. The
present paper proposes high performance nonlinear fuzzy controllers
for a real-time operation of a drying machine, being developed under
a consistent match between those issues. A PCI-6025E data
acquisition device from National Instruments® was used, and the
control system was fully designed with MATLAB® / SIMULINK
language. Drying parameters, namely relative humidity and
temperature, were controlled through MIMOs Hybrid Bang-bang+PI
(BPI) and Four-dimensional Fuzzy Logic (FLC) real-time-based
controllers to perform drying tests on biological materials. The
performance of the drying strategies was compared through several
criteria, which are reported without controllers- retuning. Controllers-
performance analysis has showed much better performance of FLC
than BPI controller. The absolute errors were lower than 8,85 % for
Fuzzy Logic Controller, about three times lower than the
experimental results with BPI control.
Abstract: This paper addresses linear quadratic regulation (LQR)
for variable speed variable pitch wind turbines. Because of the
inherent nonlinearity of wind turbine, a set of operating conditions is
identified and then a LQR controller is designed for each operating
point. The feedback controller gains are then interpolated linearly to
get control law for the entire operating region. Besides, the
aerodynamic torque and effective wind speed are estimated online to
get the gain-scheduling variable for implementing the controller. The
potential of the method is verified through simulation with the help of
MATLAB/Simulink and GH Bladed. The performance and
mechanical load when using LQR are also compared with that when
using PI controller.
Abstract: In this paper multivariable predictive PID controller has
been implemented on a multi-inputs multi-outputs control problem
i.e., quadruple tank system, in comparison with a simple multiloop
PI controller. One of the salient feature of this system is an
adjustable transmission zero which can be adjust to operate in both
minimum and non-minimum phase configuration, through the flow
distribution to upper and lower tanks in quadruple tank system.
Stability and performance analysis has also been carried out for this
highly interactive two input two output system, both in minimum
and non-minimum phases. Simulations of control system revealed
that better performance are obtained in predictive PID design.
Abstract: In recent years the large scale use of the power electronic equipment has led to an increase of harmonics in the power system. The harmonics results into a poor power quality and have great adverse economical impact on the utilities and customers. Current harmonics are one of the most common power quality problems and are usually resolved by using shunt active filter (SHAF). The main objective of this work is to develop PI and Fuzzy logic controllers (FLC) to analyze the performance of Shunt Active Filter for mitigating current harmonics under balanced and unbalanced sinusoidal source voltage conditions for normal load and increased load. When the supply voltages are ideal (balanced), both PI and FLC are converging to the same compensation characteristics. However, the supply voltages are non-ideal (unbalanced), FLC offers outstanding results. Simulation results validate the superiority of FLC with triangular membership function over the PI controller.
Abstract: This paper presents a Particle Swarm Optimization
(PSO) method for determining the optimal parameters of a first-order
controller for TCP/AQM system. The model TCP/AQM is described
by a second-order system with time delay. First, the analytical
approach, based on the D-decomposition method and Lemma of
Kharitonov, is used to determine the stabilizing regions of a firstorder
controller. Second, the optimal parameters of the controller are
obtained by the PSO algorithm. Finally, the proposed method is
implemented in the Network Simulator NS-2 and compared with the
PI controller.
Abstract: Saccharomyces cerevisiae (baker-s yeast) can exhibit
sustained oscillations during the operation in a continuous bioreactor
that adversely affects its stability and productivity. Because of
heterogeneous nature of cell populations, the cell population balance
models can be used to capture the dynamic behavior of such cultures.
In this paper an unstructured, segregated model is used which is
based on population balance equation(PBE) and then in order to
simulation, the 4th order Rung-Kutta is used for time dimension and
three methods, finite difference, orthogonal collocation on finite
elements and Galerkin finite element are used for discretization of the
cell mass domain. The results indicate that the orthogonal collocation
on finite element not only is able to predict the oscillating behavior of
the cell culture but also needs much little time for calculations.
Therefore this method is preferred in comparison with other methods.
In the next step two controllers, a globally linearizing control (GLC)
and a conventional proportional-integral (PI) controller are designed
for controlling the total cell mass per unit volume, and performances
of these controllers are compared through simulation. The results
show that although the PI controller has simpler structure, the GLC
has better performance.