Nonlinear Control of a Continuous Bioreactor Based on Cell Population Model

Saccharomyces cerevisiae (baker-s yeast) can exhibit sustained oscillations during the operation in a continuous bioreactor that adversely affects its stability and productivity. Because of heterogeneous nature of cell populations, the cell population balance models can be used to capture the dynamic behavior of such cultures. In this paper an unstructured, segregated model is used which is based on population balance equation(PBE) and then in order to simulation, the 4th order Rung-Kutta is used for time dimension and three methods, finite difference, orthogonal collocation on finite elements and Galerkin finite element are used for discretization of the cell mass domain. The results indicate that the orthogonal collocation on finite element not only is able to predict the oscillating behavior of the cell culture but also needs much little time for calculations. Therefore this method is preferred in comparison with other methods. In the next step two controllers, a globally linearizing control (GLC) and a conventional proportional-integral (PI) controller are designed for controlling the total cell mass per unit volume, and performances of these controllers are compared through simulation. The results show that although the PI controller has simpler structure, the GLC has better performance.




References:
[1] T. Munch, B. Sonnleitner, and A. Fiechter, "New insights into the
synchronization mechanism with forced synchronous cultures of
Saccharomyces cerevisiae", J. Biotechnol., 24, p299-313, 1992.
[2] S. J. Parulekar, G. B. Semones, M. J. Rolf, J. C. Lievense,
and H. C. Lim, "Induction and elimination of oscillations in continuous
cultures of Saccharomyces cerevisiae", Biotechn. Bioeng., 28, p700-710,
1986.
[3] P. R. Patnaik, "Oscillatory metabolism of Saccharomyces cerevisiae: an
overview of mechanisms and models", Biotechnology Advances, 21,
p183-192, 2003.
[4] C. Strassle, B. Sonnleitner, and A. Fiechter, "A predictive model for the
spontaneous synchronization of Saccharomyces cerevisiae grow in
continuous culture. II. Experimental verification", J. Biotechnal., 9,
p191-208, 1989.
[5] D. E. Porro, B. Martegani, M. Ranzi, and L. Alberghina, "Oscillations in
continuous cultures of budding yeasts: A segregated parameter analysis",
Biotechnol. Bioeng., 32, p411-417, 1988.
[6] T. Munch, B. Sonnleitner, and A. Fiechter, "The decisive role of the
Saccharomyces cerevisiae cell cycle behavior for dynamic growth
characterization", J. Biotechnol., 22, p329-352, 1992.
[7] M. Beuse, R. Bartling, A. Kopmann, H. Diekmann, and M. Thoma,
"Effect of the dilution rate on the mode of osillation in continuous
cultures of Saccharomyces cerevisiae", J. of Biotechnology, 61, p15-31,
1998.
[8] L. Cazzador, L. Mariani, E. Martegani, and L. Alberghina, "Structured
segregated models and analysis of self-oscillating yeast continuous
cultures", Bioprocess Eng., 5, p175-180, 1990.
[9] K. D. Jones, and D. S. Kompala, "Cybernetic model of the growth
dynamics of Saccharomyces cerevisiae in batch and continuous
cultures", J. Biotechnology, 71, p105-131, 1999.
[10] E. Martegani, D. Porro, B. M. Ranzi, and L. Alberghina, "Involvement
of a cell size control mechanism in the induction and maintenance of
oscillations in continuous cultures of budding yeast", Biotechnol.
Bioeng., 36, p453-459, 1990.
[11] C. Strassle, B. Sonnleitner, and A. Fiechter, "A predictive model for the
spontaneous synchronization of Saccharomyces cerevisiae grown in
continuous culture. I. Concept", J. Biotechnol., 7, p299-318, 1988.
[12] N. V. Mantzaris, F. Srienc, and P. Daoutidis, "Nonlinear productivity
control using a multi-stage cell population balance model", Chem. Eng.
Sci., 57, p1-14, 2002.
[13] A. G. Fredrickson, and N. V. Mantzaris, "A new set of population
balance equations for microbial and cell cultures", Chem. Eng. Sci., 57,
p2265-2278, 2002.
[14] D. Ramkrishna, D. S. Kompala., and G. T. Tsao, "Are microbes optimal
strategists?", Biotechnol. Prog., 3, p121-126, 1987.
[15] J. D. Sheppard, and P. S. Dawson, "Cell synchrony and periodic
behavior in yeast populations", Canadian J. Chem. Eng., 77, p893-902,
1999.
[16] Y. Zhang, M. A. Henson, and Y.G. Kevrekidis, "Nonlinear model
reduction for dynamic analysis of cell population models", Chem. Eng.
Sci., 58, p429-445, 2003.
[17] M. A. Henson, "Dynamic modeling and control of yeast cell populations
in continuous biochemical reactors", Comp. Chem. Eng., 27, p1185-
1199, 2003.
[18] N. V. Mantzaris, P. Daoutidis, "Cell population balance modeling and
control in continuous bioreactors", J. Process Control, 14, p775-784,
2004.
[19] G. Y. Zhu, A. M. Zamamiri, M. A. Henson, and M. A. Hjortso, "Model
predictive control of continuous yeast bioreactors using cell population
models", Chem. Eng. Sci., 55, p6155-6167, 2000.
[20] Y. Zhang, Dynamic modeling and analysis of oscillatory bioreactors,
PhD Theses, Louisiana State University, Chem. Eng. Department, 2002.
[21] M. A. Hjortso, and J. Nielsen, "A conceptual model of autonomous
oscillations in microbial cultures", Chem. Eng. Sci., 49, p1083-1095,
1994.
[22] M. A. Hjortso, and J. Nielsen, "Population balance models of
autonomous microbial oscillations", J. Biotechnol., 42, p255-269, 1995.
[23] N. V. Mantzaris, J. J. Liou, P. Daoutidis, and F. Srienc, "Numerical
solution of a mass structured cell population balance model in an
environment of changing substrate concentration", J. Biotechnol., 71,
p157-174, 1999.
[24] N. V. Mantzaris, P. Daoutidis, and F. Srienc, "Numerical solution of
multi-variable cell population balance models: I. Finite difference
methods", Comp. Chem. Eng., 25, p1411-1440, 2001.
[25] N. V. Mantzaris, P. Daoutidis, and F. Srienc, "Numerical solution of
multi-variable cell population balance models: II. Spectral methods",
Comp. Chem. Eng., 25, p1441-1462, 2001.
[26] N. V. Mantzaris, P. Daoutidis, and F. Srienc, "Numerical solution of
multi-variable cell population balance models: III. Finite element
methods", Comp. Chem. Eng., 25, p1463-1481, 2001.
[27] B. A. Finlayson, Nonlinear analysis in chemical engineering, McGraw-
Hill, 1980.
[28] M. J. Kurtz, G. Y. Zhu, A. M. Zamamiri, M. A. Henson, and M. A.
Hjortso, "Control of oscillating microbial cultures described by
population balance models", Ind. Eng. Chem. Research, 37, p4059-4070,
1998.
[29] Y. Zhang, A. M. Zamamiri, M. A. Henson, and M. A. Hjortso, "Cell
population models for bifurcation analysis and nonlinear control of
continuous yeast bioreactors", J. process control. ,12, p721-734, 2002.
[30] M. J. Kurtz, G. Y. Zhu, A. M. Zamamiri, M. A. Henson, and M. A.
Hjortso, "Control of oscillating microbial cultures described by
population balance models", Ind. Eng. Chem. Research, 37, p4059-4070,
1998.
[31] M. Shahrokhi, and M. A. Fanaei, "State estimation in a batch suspension
polymerization reactor", Iranian Polymer J., 10, p173-187, 2001.
[32] M. Soroush, and C. Kravaris, "Nonlinear control of a batch
polymerization reactor: An experimental study", AIChE J., 38, p1429-
1440, 1992.