Abstract: In space during functioning, a satellite will be heated
up due to the behavior of its components such as power electronics.
In order to prevent problems in the satellite, this heat has to be
released in space thanks to the cooling system. This system consists
of a loop heat pipe (LHP), in which a fluid streams through an
evaporator and a condenser. In the evaporator, the fluid captures the
heat from the satellite and evaporates. Then it flows to the condenser
where it releases the heat and it condenses. In this project, the two
mains parts of a cooling system are studied: the evaporator and the
condenser. The study of the diphasic loop was done starting from
digital simulations carried out under Matlab and Femlab.
Abstract: This paper presents the use of the predictive fuzzy logic controller (PFLC) applied to attitude control system for agile micro-satellite. In order to reduce the effect of unpredictable time delays and large uncertainties, the algorithm employs predictive control to predict the attitude of the satellite. Comparison of the PFLC and conventional fuzzy logic controller (FLC) is presented to evaluate the performance of the control system during attitude maneuver. The two proposed models have been analyzed with the same level of noise and external disturbances. Simulation results demonstrated the feasibility and advantages of the PFLC on the attitude determination and control system (ADCS) of agile satellite.
Abstract: This paper is a simple and systematic approaches to the design and analysis a pulse width modulation (PWM) based sliding mode controller for buck DC-DC Converters. Various aspects of the design, including the practical problems and the proposed solutions, are detailed. However, these control strategies can't compensate for large load current and input voltage variations. In this paper, a new control strategy by compromising both schemes advantages and avoiding their drawbacks is proposed, analyzed and simulated.