Abstract: In this paper, a longitudinal and lateral control approach
based on a nonlinear observer is proposed for a convoy of autonomous
vehicles to follow a desired trajectory. To authors best knowledge,
this topic has not yet been sufficiently addressed in the literature
for the control of multi vehicles. The modeling of the convoy
of the vehicles is revisited using a robotic method for simulation
purposes and control design. With these models, a sliding mode
observer is proposed to estimate the states of each vehicle in the
convoy from the available sensors, then a sliding mode control
based on this observer is used to control the longitudinal and lateral
movement. The validation and performance evaluation are done using
the well-known driving simulator Scanner-Studio. The results are
presented for different maneuvers of 5 vehicles.
Abstract: This paper features a comparative study performance of sliding mode controller (SMC) for closed-loop voltage control of direct current to direct current (DC-DC) three-cells buck converter connected in parallel, operating in continuous conduction mode (CCM), based on pulse-width modulation (PWM) with SMC based on hysteresis modulation (HM) where an adaptive feedforward technique is adopted. On one hand, for the PWM-based SM, the approach is to incorporate a fixed-frequency PWM scheme which is effectively a variant of SM control. On the other hand, for the HM-based SM, oncoming an adaptive feedforward control that makes the hysteresis band variable in the hysteresis modulator of the SM controller in the aim to restrict the switching frequency variation in the case of any change of the line input voltage or output load variation are introduced. The results obtained under load change, input change and reference change clearly demonstrates a similar dynamic response of both proposed techniques, their effectiveness is fast and smooth tracking of the desired output voltage. The PWM-based SM technique has greatly improved the dynamic behavior with a bit advantageous compared to the HM-based SM technique, as well as provide stability in any operating conditions. Simulation studies in MATLAB/Simulink environment have been performed to verify the concept.
Abstract: Two-wheel inverted pendulum robot (TWIPR) is designed with two-hub DC motors for human riding and motion control evaluation. In order to measure the tilt angle and angular velocity of the inverted pendulum robot, accelerometer and gyroscope sensors are chosen. The mobile robot’s moving position and velocity were estimated based on DC motor built in hall sensors. The control kernel of this electric mobile robot is designed with embedded Arduino Nano microprocessor. A handle bar was designed to work as steering mechanism. The intelligent model-free fuzzy sliding mode control (FSMC) was employed as the main control algorithm for this mobile robot motion monitoring with different control purpose adjustment. The intelligent controllers were designed for balance control, and moving speed control purposes of this robot under different operation conditions and the control performance were evaluated based on experimental results.
Abstract: Many modern synchronous generators in power systems are extremely weakly damped. The reasons are cost optimization of the machine building and introduction of the additional control equipment into power systems. Oscillations of the synchronous generators and related stability problems of the power systems are harmful and can lead to failures in operation and to damages. The only useful solution to increase damping of the unwanted oscillations represents the implementation of the power system stabilizers. Power system stabilizers generate the additional control signal which changes synchronous generator field excitation voltage. Modern power system stabilizers are integrated into static excitation systems of the synchronous generators. Available commercial power system stabilizers are based on linear control theory. Due to the nonlinear dynamics of the synchronous generator, current stabilizers do not assure optimal damping of the synchronous generator’s oscillations in the entire operating range. For that reason the use of the robust power system stabilizers which are convenient for the entire operating range is reasonable. There are numerous robust techniques applicable for the power system stabilizers. In this paper the use of sliding mode control for synchronous generator stability improvement is studied. On the basis of the sliding mode theory, the robust power system stabilizer was developed. The main advantages of the sliding mode controller are simple realization of the control algorithm, robustness to parameter variations and elimination of disturbances. The advantage of the proposed sliding mode controller against conventional linear controller was tested for damping of the synchronous generator oscillations in the entire operating range. Obtained results show the improved damping in the entire operating range of the synchronous generator and the increase of the power system stability. The proposed study contributes to the progress in the development of the advanced stabilizer, which will replace conventional linear stabilizers and improve damping of the synchronous generators.
Abstract: In this paper, an observer-based direct adaptive fuzzy sliding mode (OAFSM) algorithm is proposed. In the proposed algorithm, the zero-input dynamics of the plant could be unknown. The input connection matrix is used to combine the sliding surfaces of individual subsystems, and an adaptive fuzzy algorithm is used to estimate an equivalent sliding mode control input directly. The fuzzy membership functions, which were determined by time consuming try and error processes in previous works, are adjusted by adaptive algorithms. The other advantage of the proposed controller is that the input gain matrix is not limited to be diagonal, i.e. the plant could be over/under actuated provided that controllability and observability are preserved. An observer is constructed to directly estimate the state tracking error, and the nonlinear part of the observer is constructed by an adaptive fuzzy algorithm. The main advantage of the proposed observer is that, the measured outputs is not limited to the first entry of a canonical-form state vector. The closed-loop stability of the proposed method is proved using a Lyapunov-based approach. The proposed method is applied numerically on a multi-link robot manipulator, which verifies the performance of the closed-loop control. Moreover, the performance of the proposed algorithm is compared with some conventional control algorithms.
Abstract: In this paper, we have developed a sliding mode
controller for PUMA 600 manipulator robot, to control the remote
robot a teleoperation system was developed. This system includes
two sites, local and remote. The sliding mode controller is installed
at the remote site. The client asks for a position through an interface
and receives the real positions after running of the task by the remote
robot. Both sites are interconnected via the Internet. In order to verify
the effectiveness of the sliding mode controller, that is compared with
a classic PID controller. The developed approach is tested on a virtual
robot. The results confirmed the high performance of this approach.
Abstract: This study presents performance analysis results of
SMC (Sliding mode control) with changing the chattering functions
applied to slip suppression problem of electric vehicles (EVs). In
SMC, chattering phenomenon always occurs through high frequency
switching of the control inputs. It is undesirable phenomenon and
degrade the control performance, since it causes the oscillations of the
control inputs. Several studies have been conducted on this problem
by introducing some general saturation function. However, study
about whether saturation function was really best and the performance
analysis when using the other functions, weren’t being done so much.
Therefore, in this paper, several candidate functions for SMC are
selected and control performance of candidate functions is analyzed.
In the analysis, evaluation function based on the trade-off between
slip suppression performance and chattering reduction performance
is proposed. The analyses are conducted in several numerical
simulations of slip suppression problem of EVs. Then, we can
see that there is no difference of employed candidate functions
in chattering reduction performance. On the other hand, in slip
suppression performance, the saturation function is excellent overall.
So, we conclude the saturation function is most suitable for slip
suppression sliding mode control.
Abstract: The vibrations, caused by the irregularities of the road surface, are to be suppressed via suspension systems. In this paper, sliding mode control for a half bus model with air suspension system is presented. The bus is modelled as five degrees of freedom (DoF) system. The mathematical model of the half bus is developed using Lagrange Equations. For time domain analysis, the bus model is assumed to travel at certain speed over the bump road. The numerical results of the analysis indicate that the sliding mode controllers can be effectively used to suppress the vibrations and to improve the ride comfort of the busses.
Abstract: Sliding mode controller for a vehicle active suspension
system is designed in this study. The widely used quarter car model
is preferred and it is aimed to improve the ride comfort of the
passengers. The effect of the actuator time delay, which may arise
due to the information processing, sensors or actuator dynamics, is
also taken into account during the design of the controller. A sliding
mode controller was designed that has taken into account the actuator
time delay by using Smith predictor. The successful performance of
the designed controller is confirmed via numerical results.
Abstract: A two wheel inverted pendulum (TWIP) vehicle is built with two hub DC motors for motion control evaluation. Arduino Nano micro-processor is chosen as the control kernel for this electric test plant. Accelerometer and gyroscope sensors are built in to measure the tilt angle and angular velocity of the inverted pendulum vehicle. Since the TWIP has significantly hub motor dead zone and nonlinear system dynamics characteristics, the vehicle system is difficult to control by traditional model based controller. The intelligent model-free fuzzy sliding mode controller (FSMC) was employed as the main control algorithm. Then, intelligent controllers are designed for TWIP balance control, and two wheels synchronization control purposes.
Abstract: In this paper, we present a piloting law based on the adaptive differentiators via high order sliding mode controller, by using an aircraft in virtual simulated environment. To deal with the design of an autopilot controller, we propose a framework based on Software in the Loop (SIL) methodology and we use MicrosoftTM Flight Simulator (FS-2004) as the environment for plane simulation. The aircraft dynamic model is nonlinear, Multi-Input Multi-Output (MIMO) and tightly coupled. The nonlinearity resides in the dynamic equations and also in the aerodynamic coefficients' variability. In our case, two (02) aircrafts are used in the flight tests, the Zlin-142 and MQ-1 Predator. For both aircrafts and in a very low altitude flight, we send the piloting control inputs to the aircraft which has stalled due to a command disconnection. Then, we present the aircraft’s dynamic behavior analysis while reestablishing the command transmission. Finally, a comparative study between the two aircraft’s dynamic behaviors is presented.
Abstract: This paper presents Differential Evolution Algorithm (DEA) based Variable Structure Position Control (VSPC) of Laboratory DC servomotor (LDCSM). DEA is employed for the optimal tuning of Variable Structure Control (VSC) parameters for position control of a DC servomotor. The VSC combines the techniques of Sliding Mode Control (SMC) that gives the advantages of small overshoot, improved step response characteristics, faster dynamic response and adaptability to plant parameter variations, suppressed influences of disturbances and uncertainties in system behavior. The results of the simulation responses of the VSC parameters adjustment by DEA were performed in Matlab Version 2010a platform and yield better dynamic performance compared with the untuned VSC designed.
Abstract: The inverted pendulum system is a classic control
problem that is used in universities around the world. It is a suitable
process to test prototype controllers due to its high non-linearities and
lack of stability. The inverted pendulum represents a challenging
control problem, which continually moves toward an uncontrolled
state. This paper presents the possibility of balancing an inverted
pendulum system using sliding mode control (SMC). The goal is to
determine which control strategy delivers better performance with
respect to pendulum’s angle and cart's position. Therefore,
proportional-integral-derivative (PID) is used for comparison. Results
have proven SMC control produced better response compared to PID
control in both normal and noisy systems.
Abstract: This paper describes a sliding mode controller for
autonomous underwater vehicles (AUVs). The dynamic of AUV
model is highly nonlinear because of many factors, such as
hydrodynamic drag, damping, and lift forces, Coriolis and centripetal
forces, gravity and buoyancy forces, as well as forces from thruster.
To address these difficulties, a nonlinear sliding mode controller is
designed to approximate the nonlinear dynamics of AUV and
improve trajectory tracking. Moreover, the proposed controller can
profoundly attenuate the effects of uncertainties and external
disturbances in the closed-loop system. Using the Lyapunov theory
the boundedness of AUV tracking errors and the stability of the
proposed control system are also guaranteed. Numerical simulation
studies of an AUV are included to illustrate the effectiveness of the
presented approach.
Abstract: In this paper, a new SMC (Sliding Mode Control)
method with MP (Model Predictive Control) integral action for the
slip suppression of EV (Electric Vehicle) under braking is proposed.
The proposed method introduce the integral term with standard SMC
gain , where the integral gain is optimized for each control period by
the MPC algorithms. The aim of this method is to improve the safety
and the stability of EVs under braking by controlling the wheel slip
ratio. There also include numerical simulation results to demonstrate
the effectiveness of the method.
Abstract: This paper presents a power control for a Doubly Fed
Induction Generator (DFIG) using in Wind Energy Conversion
System (WECS) connected to the grid. The proposed control strategy
employs two nonlinear controllers, Backstipping (BSC) and slidingmode
controller (SMC) scheme to directly calculate the required
rotor control voltage so as to eliminate the instantaneous errors of
active and reactive powers. In this paper the advantages of BSC and
SMC are presented, the performance and robustness of this two
controller’s strategy are compared between them. First, we present a
model of wind turbine and DFIG machine, then a synthesis of the
controllers and their application in the DFIG power control.
Simulation results on a 1.5MW grid-connected DFIG system are
provided by MATLAB/Simulink.
Abstract: In this study, we proposed two techniques to track the
maximum power point (MPPT) of a photovoltaic system. The first is
an intelligent control technique, and the second is robust used for
variable structure system. In fact the characteristics I-V and P–V of
the photovoltaic generator depends on the solar irradiance and
temperature. These climate changes cause the fluctuation of
maximum power point; a maximum power point tracking technique
(MPPT) is required to maximize the output power. For this we have
adopted a control by fuzzy logic (FLC) famous for its stability and
robustness. And a Siding Mode Control (SMC) widely used for
variable structure system. The system comprises a photovoltaic panel
(PV), a DC-DC converter, which is considered as an adaptation stage
between the PV and the load. The modelling and simulation of the
system is developed using MATLAB/Simulink. SMC technique
provides a good tracking speed in fast changing irradiation and when
the irradiation changes slowly or it is constant the panel power of
FLC technique presents a much smoother signal with less
fluctuations.
Abstract: This paper presents a combination of both robust
nonlinear controller and nonlinear controller for a class of nonlinear
4Y Octorotor UAV using Back-stepping and sliding mode controller.
The robustness against internal and external disturbance and
decoupling control are the merits of the proposed paper. The
proposed controller decouples the Octorotor dynamical system. The
controller is then applied to a 4Y Octortor UAV and its feature will
be shown.
Abstract: Diabetes is a growing health problem in worldwide.
Especially, the patients with Type 1 diabetes need strict glycemic
control because they have deficiency of insulin production. This
paper attempts to control blood glucose based on body mathematical
body model. The Bergman minimal mathematical model is used to
develop the nonlinear controller. A novel back-stepping based sliding
mode control (B-SMC) strategy is proposed as a solution that
guarantees practical tracking of a desired glucose concentration. In
order to show the performance of the proposed design, it is compared
with conventional linear and fuzzy controllers which have been done
in previous researches. The numerical simulation result shows the
advantages of sliding mode back stepping controller design to linear
and fuzzy controllers.
Abstract: This paper presents a 3D guidance scheme for
Unmanned Aerial Vehicles (UAVs). The proposed guidance scheme
is based on the sliding mode approach using nonlinear sliding
manifolds. Generalized 3D kinematic equations are considered
here during the design process to cater for the coupling between
longitudinal and lateral motions. Sliding mode based guidance
scheme is then derived for the multiple-input multiple-output
(MIMO) system using the proposed nonlinear manifolds. Instead of
traditional sliding surfaces, nonlinear sliding surfaces are proposed
here for performance and stability in all flight conditions. In the
reaching phase control inputs, the bang-bang terms with signum
functions are accompanied with proportional terms in order to reduce
the chattering amplitudes. The Proposed 3D guidance scheme is
implemented on a 6-degrees-of-freedom (6-dof) simulation of a UAV
and simulation results are presented here for different 3D trajectories
with and without disturbances.