Abstract: This article presents an approach with regards to the Functional Testing of Space System (SS) that could be a space vehicle (spacecraft-S/C) and/or its equipment and components – S/C subsystems. This test should finalize the Space Qualification Tests (SQT) campaign. It could be considered as a generic test and used for a wide class of SS that, from the point of view of System Dynamics and Control Theory, may be described by the ordinary differential equations. The suggested methodology is based on using semi-natural experiment laboratory stand that does not require complicated, precise and expensive technological control-verification equipment. However, it allows for testing totally assembled system during Assembling, Integration and Testing (AIT) activities at the final phase of SQT, involving system hardware (HW) and software (SW). The test physically activates system input (sensors) and output (actuators) and requires recording their outputs in real time. The data are then inserted in a laboratory computer, where it is post-experiment processed by the MATLAB/Simulink Identification Toolbox. It allows for estimating the system dynamics in the form of estimation of its differential equation coefficients through the verification experimental test and comparing them with expected mathematical model, prematurely verified by mathematical simulation during the design process. Mathematical simulation results presented in the article show that this approach could be applicable and helpful in SQT practice. Further semi-natural experiments should specify detail requirements for the test laboratory equipment and test-procedures.
Abstract: Flexible satellites are equipped with various appendages which vibrate under the influence of any excitation and make the attitude of the satellite to be unstable. Therefore, the system must be able to adjust to balance the effect of these appendages in order to point accurately and satisfactorily which is one of the most important problems in satellite design. Proportional Integral Derivative (PID) Controller is simple to design and computationally efficient to implement which is used to stabilize the effect of these flexible appendages. However, manual turning of the PID is time consuming, waste energy and money. Particle Swarm Optimization (PSO) is used to tune the parameters of PID Controller. Simulation results obtained show that PSO tuned PID Controller is able to re-orient the spacecraft attitude as well as dampen the effect of mechanical resonance and yields better performance when compared with manually tuned PID Controller.
Abstract: This paper presents the effect of the orbit inclination
on the pointing error of the satellite antenna and consequently on its
footprint on earth for a typical Ku- band payload system. The performance assessment is examined using both analytical
simulations and practical measurements, taking into account all the
additional sources of the pointing errors, such as East-West station
keeping, orbit eccentricity, and actual attitude control performance. An implementation and computation of the sinusoidal biases in
satellite roll and pitch used to compensate the pointing error of the
satellite antenna coverage is studied and evaluated before and after
the pointing corrections performed. A method for evaluation of the performance of the implemented
biases has been introduced through measuring satellite received level
from a mono-pulse tracking 11.1m transmitting antenna before and
after the implementation of the pointing corrections.
Abstract: In this paper, the problem of fault detection and
isolation in the attitude control subsystem of spacecraft formation
flying is considered. In order to design the fault detection method, an
extended Kalman filter is utilized which is a nonlinear stochastic state
estimation method. Three fault detection architectures, namely,
centralized, decentralized, and semi-decentralized are designed based
on the extended Kalman filters. Moreover, the residual generation
and threshold selection techniques are proposed for these
architectures.
Abstract: This paper presents the use of the predictive fuzzy logic controller (PFLC) applied to attitude control system for agile micro-satellite. In order to reduce the effect of unpredictable time delays and large uncertainties, the algorithm employs predictive control to predict the attitude of the satellite. Comparison of the PFLC and conventional fuzzy logic controller (FLC) is presented to evaluate the performance of the control system during attitude maneuver. The two proposed models have been analyzed with the same level of noise and external disturbances. Simulation results demonstrated the feasibility and advantages of the PFLC on the attitude determination and control system (ADCS) of agile satellite.
Abstract: This paper presents implementation of attitude controller for a small UAV using field programmable gate array (FPGA). Due to the small size constrain a miniature more compact and computationally extensive; autopilot platform is needed for such systems. More over UAV autopilot has to deal with extremely adverse situations in the shortest possible time, while accomplishing its mission. FPGAs in the recent past have rendered themselves as fast, parallel, real time, processing devices in a compact size. This work utilizes this fact and implements different attitude controllers for a small UAV in FPGA, using its parallel processing capabilities. Attitude controller is designed in MATLAB/Simulink environment. The discrete version of this controller is implemented using pipelining followed by retiming, to reduce the critical path and thereby clock period of the controller datapath. Pipelined, retimed, parallel PID controller implementation is done using rapidprototyping and testing efficient development tool of “system generator", which has been developed by Xilinx for FPGA implementation. The improved timing performance enables the controller to react abruptly to any changes made to the attitudes of UAV.
Abstract: The objective of this paper is to develop a neural
network-based residual generator to detect the fault in the actuators
for a specific communication satellite in its attitude control system
(ACS). First, a dynamic multilayer perceptron network with dynamic
neurons is used, those neurons correspond a second order linear
Infinite Impulse Response (IIR) filter and a nonlinear activation
function with adjustable parameters. Second, the parameters from the
network are adjusted to minimize a performance index specified by
the output estimated error, with the given input-output data collected
from the specific ACS. Then, the proposed dynamic neural network
is trained and applied for detecting the faults injected to the wheel,
which is the main actuator in the normal mode for the communication
satellite. Then the performance and capabilities of the proposed
network were tested and compared with a conventional model-based
observer residual, showing the differences between these two
methods, and indicating the benefit of the proposed algorithm to
know the real status of the momentum wheel. Finally, the application
of the methods in a satellite ground station is discussed.
Abstract: KSLV-I(Korea Space Launch Vehicle-I) is designed as
a launch vehicle to enter a 100 kg-class satellite to the LEO(Low Earth
Orbit). Attitude angles of the upper-stage, including roll, pitch and
yaw are controlled by the cold gas thruster system using nitrogen gas.
The cold gas thruster is an actuator in the RCS(Reaction Control
System). To design an attitude controller for the upper-stage, thrust
measurement in vacuum condition is required. In this paper, the new
thrust measurement system and calibration mechanism are developed
and measurement errors and signal processing method are presented.
Abstract: Attitude control of aerospace system with liquid containers may face to a problem associate with fuel sloshing. The sloshing phenomena can degrade the stability of control system and in the worst case, interaction between the attitude control system and fuel vibration leading to resonance. In this paper, a full process of nonlinear dynamic modeling of an aerospace launch vehicle with fuel sloshing is given. Then, a new control system based on model reference adaptive filter is proposed and its algorithm is extracted. This controller implemented on the main attitude control system. Finally, numerical simulation of nonlinear model and control system is carried out to examine the performance of the new controller. Results of simulations show that the inconvenient effects of the fuel sloshing by augmenting this control system are reduced and attitude control system performs, satisfactorily.
Abstract: Small satellites have become increasingly popular recently as a means of providing educational institutes with the chance to design, construct, and test their spacecraft from beginning to the possible launch due to the low launching cost. This approach is remarkably cost saving because of the weight and size reduction of such satellites. Weight reduction could be realised by utilising electromagnetic coils solely, instead of different types of actuators. This paper describes the restrictions of using only “Electromagnetic" actuation for 3D stabilisation and how to make the magnetorquer based attitude control feasible using Fuzzy Logic Control (FLC). The design is developed to stabilize the spacecraft against gravity gradient disturbances with a three-axis stabilizing capability.
Abstract: In this paper, we are interested in attitude control of a satellite, which using wheels of reaction, by state feedback. First, we develop a method allowing us to put the control and its integral in the state-feedback form. Then, by using the theorem of Gronwall- Bellman, we put the sufficient conditions so that the nonlinear system modeling the satellite is stabilisable and observed by state feedback.