Nonlinear Dynamic Modeling and Active Vibration Control of a System with Fuel Sloshing

Attitude control of aerospace system with liquid containers may face to a problem associate with fuel sloshing. The sloshing phenomena can degrade the stability of control system and in the worst case, interaction between the attitude control system and fuel vibration leading to resonance. In this paper, a full process of nonlinear dynamic modeling of an aerospace launch vehicle with fuel sloshing is given. Then, a new control system based on model reference adaptive filter is proposed and its algorithm is extracted. This controller implemented on the main attitude control system. Finally, numerical simulation of nonlinear model and control system is carried out to examine the performance of the new controller. Results of simulations show that the inconvenient effects of the fuel sloshing by augmenting this control system are reduced and attitude control system performs, satisfactorily.





References:
[1] H. N. Abramson, The dynamic of liquid in moving containers, NASA
SP-106 contract paper, 1966.
[2] Meserole, J. S. and Fortini, A., Slosh Dynamics in a Toroidal Tank, J.
Soacecraft, Vol. 24, No. 6, Nov.-Dec. 1987.
[3] Faltinseni, O. M. and Timokha, A., Asymptotic modal approximation of
nonlinear resonant sloshing in a rectangular tank with small fluid depth,
J. Fluid Mech. (2002), vol. 470, pp. 319-357.
[4] Nichkawde, C, Harish, P.M. and Ananthkrishnan, N., Stability analysis
of a multi body system model for coupled slosh-vehicle dynamics,
Journal of Sound and Vibration 275 (2004) 1069-1083.
[5] Krishnaswamy, K., Bugajski, D., Inversion Based Multi body Control -
Launch Vehicle with Fuel Slosh, AIAA Guidance, Navigation, and
Control Conference and Exhibit 15 - 18 August 2005, San Francisco,
California.
[6] Dong, K., Qi, N.M., Guo, J.J., Li, Y.Q., An Estimation Approach for
Propellant Sloshing Effect on Spacecraft GNC, 1-4244-2386-6/08 IEEE,
2008.
[7] Kim, D. and Choi, J. W., Attitude controller design for a launch vehicle
with fuel-slosh, SICE 2000 July 26-28, 2000, Iizuka.
[8] Meirovitch, L., Hybrid state equations of motion for flexible body in
term of Quasi-coordinates, J of guidance, dynamic and control, Vol. 14,
No. 5, 1990.
[9] H.D. Choi, H. Bang, An adaptive control approach to the attitude control
of a flexible rocket, Control engineering practice 8 (2000) 1003- 1010.
[10] A.M. Khoshnood, J. Roshanian, A. Khaki-sedigh, Model reference
adaptive control for a flexible launch vehicle, IMechE, Journal of
systems and control engineering Vol. 222 No. 1 (2008) 49-55.