Abstract: Plug and process loads (PPLs) account for a large portion of U.S. commercial building energy use. There is a huge potential to reduce whole building consumption by targeting PPLs for energy savings measures or implementing some form of plug load management (PLM). Despite this potential, there has yet to be a widely adopted commercial PLM technology. This paper describes the Automatic Type and Location Identification System (ATLIS), a PLM system framework with automatic and dynamic load detection (ADLD). ADLD gives PLM systems the ability to automatically identify devices as they are plugged into the outlets of a building. The ATLIS framework takes advantage of smart, connected devices to identify device locations in a building, meter and control their power, and communicate this information to a central database. ATLIS includes five primary capabilities: location identification, communication, control, energy metering, and data storage. A laboratory proof of concept (PoC) demonstrated all but the energy metering capability, and these capabilities were validated using a series of system tests. The PoC was able to identify when a device was plugged into an outlet and the location of the device in the building. When a device was moved, the PoC’s dashboard and database were automatically updated with the new location. The PoC implemented controls to devices from the system dashboard so that devices maintained correct schedules regardless of where they were plugged in within the building. ATLIS’s primary technology application is improved PLM, but other applications include asset management, energy audits, and interoperability for grid-interactive efficient buildings. An ATLIS-based system could also be used to direct power to critical devices, such as ventilators, during a brownout or blackout. Such a framework is an opportunity to make PLM more widespread and reduce the amount of energy consumed by PPLs in current and future commercial buildings.
Abstract: Over the past few years, the idea of adaptive buildings and specifically, adaptive building energy management systems (ABEMS) has become popular. Well-performed management in terms of energy is to create a balance between energy consumption and user comfort; therefore, in new energy management models, efficient energy consumption is not the sole factor and the user's comfortability is also considered in the calculations. One of the main ways of measuring this factor is by analyzing user feedback on the conditions to understand whether they are satisfied with conditions or not. This paper provides a comprehensive review of recent approaches towards energy management systems based on users' feedbacks and subsequently performs a comparison between them premised upon their efficiency and accuracy to understand which approaches were more accurate and which ones resulted in a more efficient way of minimizing energy consumption while maintaining users' comfortability. It was concluded that the highest accuracy rate among the presented works was 95% accuracy in determining satisfaction and up to 51.08% energy savings can be achieved without disturbing user’s comfort. Considering the growing interest in designing and developing adaptive buildings, these studies can support diverse inquiries about this subject and can be used as a resource to support studies and researches towards efficient energy consumption while maintaining the comfortability of users.
Abstract: Building materials selection is critical for the sustainability of any project. The choice of building materials has a huge impact on the built environment and cost of projects. Building materials emit huge amount of carbon dioxide (CO2) due to the use of cement as a basic component in the manufacturing process and as a binder, which harms our environment. Energy consumption from buildings has increased in the last few years; a huge amount of energy is being wasted from using unsustainable building and finishing materials, as well as from the process of heating and cooling of buildings. In addition, the construction sector in Egypt is taking a good portion of the economy; however, there is a lack of awareness of buildings environmental impacts on the built environment. Using advanced building materials and different wall systems can help in reducing heat consumption, the project’s initial and long-term costs, and minimizing the environmental impacts. Red Bricks is one of the materials that are being used widely in Egypt. There are many other types of bricks such as Autoclaved Aerated Concrete (AAC); however, the use of Red Bricks is dominating the construction industry due to its affordability and availability. This research focuses on the New Egyptian Administrative Capital as a case study to investigate the potential of the influence of using different wall systems such as AAC on the project’s cost and the environment. The aim of this research is to conduct a comparative analysis between the traditional and most commonly used bricks in Egypt, which is Red Bricks, and AAC wall systems. Through an economic and environmental study, the difference between the two wall systems will be justified to encourage the utilization of uncommon techniques in the construction industry to build more affordable, energy efficient and sustainable buildings. The significance of this research is to show the potential of using AAC in the construction industry and its positive influences. The study analyzes the factors associated with choosing suitable building materials for different projects according to the need and criteria of each project and its nature without harming the environment and wasting materials that could be saved or recycled. The New Egyptian Administrative Capital is considered as the country’s new heart, where ideas regarding energy savings and environmental benefits are taken into consideration. Meaning that, Egypt is taking good steps to move towards more sustainable construction. According to the analysis and site visits, there is a potential in reducing the initial costs of buildings by 12.1% and saving energy by using different techniques up to 25%. Interviews with the mega structures project engineers and managers reveal that they are more open to introducing sustainable building materials that will help in saving the environment and moving towards green construction as well as to studying more effective techniques for energy conservation.
Abstract: Increased energy consumption in the academic buildings, creates the need to implement energy saving measures and to take advantage of the renewable energy sources to cover the electrical needs of those buildings. An Academic Library will be used as a case study. With the aid of RETScreen software that takes into account the energy consumptions and characteristics of the Library Building, it is proved that measures such as the replacement of fluorescent lights with led lights, the installation of outdoor shading, the replacement of the openings and Building Management System installation, provide a high level of energy savings. Moreover, given the available space of the building and the climatic data, the installation of a photovoltaic system of 100 kW can also cover a serious amount of the building energy consumption, unlike a wind system that seems uncompromising. Lastly, HOMER software is used to compare the use of a photovoltaic system against a wind system in order to verify the results that came up from the RETScreen software concerning the renewable energy sources.
Abstract: The primary focus of this paper is the generation of
energy-optimal speed trajectories for heterogeneous electric vehicle
platoons in urban driving conditions. Optimal speed trajectories are
generated for individual vehicles and for an entire platoon under
the assumption that they can be executed without errors, as would
be the case for self-driving vehicles. It is then shown that the
optimization for the “average vehicle in the platoon” generates similar
transportation energy savings to optimizing speed trajectories for
each vehicle individually. The introduced approach only requires the
lead vehicle to run the optimization software while the remaining
vehicles are only required to have adaptive cruise control capability.
The achieved energy savings are typically between 30% and 50%
for stop-to-stop segments in cities. The prime motivation of urban
platooning comes from the fact that urban platoons efficiently utilize
the available space and the minimization of transportation energy in
cities is important for many reasons, i.e., for environmental, power,
and range considerations.
Abstract: Daylight utilization is a key factor in achieving visual and thermal comfort, and energy savings in integrated building design. However, lack of measured data related to this topic has become a major challenge with the increasing need for integrating lighting concepts and simulations in the early stages of design procedures. The current paper deals with the values of daylight illuminance on horizontal and south facing vertical surfaces; the data are estimated using IESNA model and measured values of the horizontal and vertical illuminance, and a regression model with an acceptable linear correlation is obtained. The resultant illuminance frequency curves are useful for estimating daylight availability on south facing surfaces in Tehran. In addition, the relationship between indirect vertical illuminance and the corresponding global horizontal illuminance is analyzed. A simple parametric equation is proposed in order to predict the vertical illumination on a shaded south facing surface. The equation correlates the ratio between the vertical and horizontal illuminance to the solar altitude and is used with another relationship for prediction of the vertical illuminance. Both equations show good agreement, which allows for calculation of indirect vertical illuminance on a south facing surface at any time throughout the year.
Abstract: The reduction of energy consumption through improvements in energy efficiency has become an important goal for all industries, in order to improve the efficiency of the economy, and to reduce the emissions of Co2 caused by power generation. The objective of this paper is to investigate opportunities to increase process energy efficiency at the distillation unit of Shiraz oil refinery in south of Iran. The main aim of the project is to locate energy savings by use of pinch technology and to assess them. At first all the required data of hot and cold streams in preheating section of distillation unit has been extracted from the available flow sheets and then pinch analysis has been conducted. The present case study is a threshold one which does not need any utilities. After running range, targeting several heat exchanger networks were designed with respect to operating conditions and different ΔTmin. The optimal value of ΔTmin was calculated to be 22.3 °C. Based on this optimal value, there will be 5% reduction in annual total cost of heat exchanger network.
Abstract: Renewable energy resources, which can supplement space and water heating for residential buildings, can have a noticeable impact on natural gas consumption and air pollution. This study considers a technical analysis of a combined solar water heating system with evacuated tube solar collectors for different solar coverage, ranging from 20% to 100% of the total roof area of a typical residential building located in Edmonton, Alberta, Canada. The alternative heating systems were conventional (non-condensing) and condensing tankless water heaters and condensing boilers that were coupled to solar water heating systems. The performance of the alternative heating systems was compared to a traditional heating system, consisting of a conventional boiler, applied to houses of various gross floor areas. A comparison among the annual natural gas consumption, carbon dioxide (CO2) mitigation, and emissions for the various house sizes indicated that the combined solar heating system can reduce the natural gas consumption and CO2 emissions, and increase CO2 mitigation for all the systems that were studied. The results suggest that solar water heating systems are potentially beneficial for residential heating system applications in terms of energy savings and CO2 mitigation.
Abstract: Carefully scheduling the operations of pumps can be
resulted to significant energy savings. Schedules can be defined
either implicit, in terms of other elements of the network such as tank
levels, or explicit by specifying the time during which each pump is
on/off. In this study, two new explicit representations based on timecontrolled
triggers were analyzed, where the maximum number of
pump switches was established beforehand, and the schedule may
contain fewer switches than the maximum. The optimal operation of
pumping stations was determined using a Jumping Particle Swarm
Optimization (JPSO) algorithm to achieve the minimum energy cost.
The model integrates JPSO optimizer and EPANET hydraulic
network solver. The optimal pump operation schedule of VanZyl
water distribution system was determined using the proposed model
and compared with those from Genetic and Ant Colony algorithms.
The results indicate that the proposed model utilizing the JPSO
algorithm is a versatile management model for the operation of realworld
water distribution system.
Abstract: A lower consumption of thermal energy will
contribute not only to a reduction in the running costs, but also in the
reduction of pollutant emissions that contribute to the greenhouse
effect. Cogeneration or CHP (Combined Heat and Power) is the
system that produces power and usable heat simultaneously by
decreasing the pollutant emissions and increasing the efficiency.
Combined production of mechanical or electrical and thermal energy
using a simple energy source, such as oil, coal, natural or liquefied
gas, biomass or the sun; affords remarkable energy savings and
frequently makes it possible to operate with greater efficiency when
compared to a system producing heat and power separately. This
study aims to bring out the contributions of cogeneration systems to
the environment and sustainability by saving the energy and reducing
the emissions. In this way we made a comprehensive investigation in
the literature by focusing on the environmental aspects of the
cogeneration systems. In the light of these studies we reached that,
cogeneration systems must be consider in sustainability and their
benefits on protecting the ecology must be investigated.
Abstract: Residential buildings consume significant amounts of
energy and produce large amount of emissions and waste. However,
there is a substantial potential for energy savings in this sector which
needs to be evaluated over the life cycle of residential buildings. Life
Cycle Assessment (LCA) methodology has been employed to study
the primary energy uses and associated environmental impacts of
different phases (i.e., product, construction, use, end of life, and
beyond building life) for residential buildings. Four different
alternatives of residential buildings in Vancouver (BC, Canada) with
a 50-year lifespan have been evaluated, including High Rise
Apartment (HRA), Low Rise Apartment (LRA), Single family
Attached House (SAH), and Single family Detached House (SDH).
Life cycle performance of the buildings is evaluated for embodied
energy, embodied environmental impacts, operational energy,
operational environmental impacts, total life-cycle energy, and total
life cycle environmental impacts. Estimation of operational energy
and LCA are performed using DesignBuilder software and Athena
Impact estimator software respectively.
The study results revealed that over the life span of the buildings,
the relationship between the energy use and the environmental
impacts are identical. LRA is found to be the best alternative in terms
of embodied energy use and embodied environmental impacts; while,
HRA showed the best life-cycle performance in terms of minimum
energy use and environmental impacts. Sensitivity analysis has also
been carried out to study the influence of building service lifespan
over 50, 75, and 100 years on the relative significance of embodied
energy and total life cycle energy. The life-cycle energy requirements
for SDH are found to be a significant component among the four
types of residential buildings. The overall disclose that the primary
operations of these buildings accounts for 90% of the total life cycle
energy which far outweighs minor differences in embodied effects
between the buildings.
Abstract: We present results from experimental price-setting oligopolies in which green firms undertake different levels of energy-saving investments motivated by public subsidies and demand-side advantages. We find that consumers reveal higher willingness to pay for greener sellers’ products. This observation in conjunction to the fact that greener sellers set higher prices is compatible with the use and interpretation of energy-saving behaviour as a differentiation strategy. However, sellers do not exploit the resulting advantage through sufficiently high price-cost margins, because they seem trapped into “run to stay still” competition. Regarding the use of public subsidies to energy-saving sellers we uncover an undesirable crowding-out effect of consumers’ intrinsic tendency to support green manufacturers. Namely, consumers may be less willing to support a green seller whose energy-saving strategy entails a direct financial benefit. Finally, we disentangle two alternative motivations for consumer’s attractions to pro-social firms; first, the self-interested recognition of the firm’s contribution to the public and private welfare and, second, the need to compensate a firm for the cost entailed in each pro-social action. Our results show the prevalence of the former over the latter.
Abstract: Recently, distributed generation technologies have received much attention for the potential energy savings and reliability assurances that might be achieved as a result of their widespread adoption. The distribution feeder reconfiguration (DFR) is one of the most important control schemes in the distribution networks, which can be affected by DGs. This paper presents a new approach to DFR at the distribution networks considering wind turbines. The main objective of the DFR is to minimize the deviation of the bus voltage. Since the DFR is a nonlinear optimization problem, we apply the Adaptive Modified Firefly Optimization (AMFO) approach to solve it. As a result of the conflicting behavior of the single- objective function, a fuzzy based clustering technique is employed to reach the set of optimal solutions called Pareto solutions. The approach is tested on the IEEE 32-bus standard test system.
Abstract: Hospitals, everywhere, are considered heavy energy consumers. Hospital Intensive Care Unit spaces pose a special challenge, where design guidelines requires the provision of external windows for daylighting and external view. Window protection strategies could be employed to reduce energy loads without detriment effect on comfort or health care. This paper addresses the effectiveness of using various window strategies on the annual cooling, heating and lighting energy use of a typical Hospital Intensive Unit space. Series of experiments were performed using the EnergyPlus simulation software for a typical Intensive Care Unit (ICU) space in Cairo, located in the Egyptian desert. This study concluded that the use of shading systems is more effective in conserving energy in comparison with glazing of different types, in the Cairo ICUs. The highest energy savings in the West and South orientations were accomplished by external perforated solar screens, followed by overhangs positioned at a protection angle of 45°.
Abstract: The concern with sustainability brought the need for optimization of the buildings to reduce consumption of natural resources. Almost 1/3 of energy demanded by Brazilian housings is used to provide thermal solutions. AEC sector may contribute applying bioclimatic strategies on building design. The aim of this research is to investigate the viability of applying some alternative solutions in residential buildings. The research was developed with computational simulation on single family social housing, examining envelope type, absorptance, and insolation. The analysis of the thermal performance applied both Brazilian standard NBR 15575 and degree-hour method, in the scenery of Porto Alegre, a southern Brazilian city. We used BIM modeling through Revit/Autodesk and used Energy Plus to thermal simulation. The payback of the investment was calculated comparing energy savings and building costs, in a period of 50 years. The results shown that with the increment of envelope’s insulation there is thermal comfort improvement and energy economy, with a pay-back period of 24 to 36 years, in some cases.
Abstract: Hospitals represent approximately 6% of total energy consumption in the utility buildings sector. Heating, Ventilation and Air Conditioning (HVAC) systems are the major part of electrical energy consumption at the hospitals. The air-conditioning system is responsible for around 70% of total electricity consumption. Electric motors and lighting systems in a hospital represent approximately 19% and 21% of the total energy consumption, respectively. In this paper, profiles of hospital energy end-use consumption and an overview of energy saving areas at the hospitals are presented.
Abstract: Hong Kong is a densely populated city suffering badly from the urban heat island effect. Green wall offers a means of ameliorating the situation but there are doubts over its suitability in Hong Kong’s unique environment. In this paper, we look at the potential for green walls in Hong Kong first by summarizing some of the Chinese green walling systems and associated vegetation in use, then by an introduction to three existing green walls in Hong Kong, and finally through a small experiment aimed at identifying the likely main effects of green walled housing.
The results indicate that green walling in Hong Kong is likely to provide enhanced internal house environment in terms of warm weather temperature reduction, stabilization and damping, with direct energy savings in air-conditioning and indirect district benefits of reduced heat island effect and carbon emissions. The green walling insulation properties also suggest the possibility of warmer homes in winter and/or energy savings in mechanical heating provision.
Abstract: The benefits of eco-roofs is quite well known, however there remains very little research conducted for the implementation of eco-roofs in subtropical climates such as Australia. There are many challenges facing Australia as it moves into the future, climate change is proving to be one of the leading challenges. In order to move forward with the mitigation of climate change, the impacts of rapid urbanization need to be offset. Eco-roofs are one way to achieve this; this study presents the energy savings and environmental benefits of the implementation of eco-roofs in subtropical climates. An experimental set-up was installed at Rockhampton campus of Central Queensland University, where two shipping containers were converted into small offices, one with an eco-roof and one without. These were used for temperature, humidity and energy consumption data collection. In addition, a computational model was developed using Design Builder software (state-of-the-art building energy simulation software) for simulating energy consumption of shipping containers and environmental parameters, this was done to allow comparison between simulated and real world data. This study found that eco-roofs are very effective in subtropical climates and provide energy saving of about 13% which agrees well with simulated results.
Abstract: The objective of this study is to present the test
results of variable air volume (VAV) air conditioning system
optimized by two objective genetic algorithm (GA). The objective
functions are energy savings and thermal comfort. The optimal set
points for fuzzy logic controller (FLC) are the supply air temperature
(Ts), the supply duct static pressure (Ps), the chilled water
temperature (Tw), and zone temperature (Tz) that is taken as the
problem variables. Supply airflow rate and chilled water flow rate are
considered to be the constraints. The optimal set point values are
obtained from GA process and assigned into fuzzy logic controller
(FLC) in order to conserve energy and maintain thermal comfort in
real time VAV air conditioning system. A VAV air conditioning
system with FLC installed in a software laboratory has been taken for
the purpose of energy analysis. The total energy saving obtained in
VAV GA optimization system with FLC compared with constant air
volume (CAV) system is expected to achieve 31.5%. The optimal
duct static pressure obtained through Genetic fuzzy methodology
attributes to better air distribution by delivering the optimal quantity
of supply air to the conditioned space. This combination enhanced
the advantages of uniform air distribution, thermal comfort and
improved energy savings potential.
Abstract: This study presents energy saving in general-purpose
pumps widely used in industrial applications. Such pumps are
normally driven by a constant-speed electrical motor which in most
applications must support varying load conditions. This is equivalent
to saying the loading conditions mismatch the designed optimal
energy consumption requirements of the intended application thus
resulting in substantial energy losses. In the held experiments it was
indicated that combination of mechanical and electrical speed drives
can contribute to lower energy consumption in the pump without
negatively distorting the required performance indices of a typical
centrifugal pump at substantially lower energy consumption. The
registered energy savings were recorded to be within the 15-40%
margin. It was also indicated that although VSDs are installed at a
cost, the financial burden is balanced against the earnings resulting
from the associated energy savings.