Abstract: In this paper, vibration control response of passenger seat in quarter car model having three degrees of freedom is studied. Three different control strategies are taken into account using Adaptive Neuro Fuzzy Inference System (ANFIS) controller. In first case, ANFIS controller is applied in main suspension of active quarter car model. In second case, passenger seat suspension is assembled with ANFIS controller. Finally, both main and passenger seat suspensions are integrated with ANFIS controller. Simulation work under random road excitations is performed using passive and controlled quarter car models for performance comparison of passenger ride comfort. Ride comfort analysis is also compared as per ISO 2631-1 criterion. The obtained simulation responses are compared taking passenger seat acceleration and displacement response in time and frequency domain for the selection of best control strategy in designed quarter car model.
Abstract: In this paper, different concrete codes including America, New Zealand, Mexico, Italy, India, Canada, Hong Kong, Euro Code and Britain are compared with the Iranian concrete design code. First, by using Adaptive Neuro Fuzzy Inference System (ANFIS), the codes having the most correlation with the Iranian ninth issue of the national regulation are determined. Consequently, two anticipated methods are used for comparing the codes: Artificial Neural Network (ANN) and Multi-variable regression. The results show that ANN performs better. Predicting is done by using only tensile steel ratio and with ignoring the compression steel ratio.
Abstract: A large-scale power system (LSPS) consists of two
or more sub-systems connected by inter-connecting transmission.
Loading pattern on an LSPS always changes from time to time and
varies depend on consumer need. The serious instability problem is
appeared in an LSPS due to load fluctuation in all of the bus. Adaptive
neuro-fuzzy inference system (ANFIS)-based power system stabilizer
(PSS) is presented to cover the stability problem and to enhance
the stability of an LSPS. The ANFIS control is presented because
the ANFIS control is more effective than Mamdani fuzzy control in
the computation aspect. Simulation results show that the presented
PSS is able to maintain the stability by decreasing peak overshoot
to the value of −2.56 × 10−5 pu for rotor speed deviation Δω2−3.
The presented PSS also makes the settling time to achieve at 3.78
s on local mode oscillation. Furthermore, the presented PSS is able
to improve the peak overshoot and settling time of Δω3−9 to the
value of −0.868 × 10−5 pu and at the time of 3.50 s for inter-area
oscillation.
Abstract: Fused deposition modelling (FDM) is one of the most prominent rapid prototyping (RP) technologies which is being used to efficiently fabricate CAD 3D geometric models. However, the process is coupled with many drawbacks, of which the surface quality of the manufactured RP parts is among. Hence, studies relating to improving the surface roughness have been a key issue in the field of RP research. In this work, a technique of modelling the surface roughness in FDM is presented. Using experimentally measured surface roughness response of the FDM parts, an ANFIS prediction model was developed to obtain the surface roughness in the FDM parts using the main critical process parameters that affects the surface quality. The ANFIS model was validated and compared with experimental test results.
Abstract: In this study, a black box modeling of the coupled-tank system is obtained by using fuzzy sets. The derived model is tested via adaptive neuro fuzzy inference system (ANFIS). In order to achieve a better control performance, the parameters of three different controller types, classical proportional integral controller (PID), fuzzy PID and function tuner method, are tuned by one of the evolutionary computation method, genetic algorithm. All tuned controllers are applied to the fuzzy model of the coupled-tank experimental setup and analyzed under the different reference input values. According to the results, it is seen that function tuner method demonstrates better robust control performance and guarantees the closed loop stability.
Abstract: The growth in the demand of electrical energy is
leading to load on the Power system which increases the occurrence
of frequent oscillations in the system. The reason for the oscillations
is due to the lack of damping torque which is required to dominate
the disturbances of Power system. By using FACT devices, such as
Unified Power Flow Controller (UPFC) can control power flow,
reduce sub-synchronous resonances and increase transient stability.
Hence, UPFC is used to damp the oscillations occurred in Power
system. This research focuses on adapting the neuro fuzzy controller
for the UPFC design by connecting the infinite bus (SMIB - Single
machine Infinite Bus) to a linearized model of synchronous machine
(Heffron-Phillips) in the power system. This model gains the
capability to improve the transient stability and to damp the
oscillations of the system.
Abstract: In this study, three robust predicting methods, namely artificial neural network (ANN), adaptive neuro fuzzy inference system (ANFIS) and support vector machine (SVM) were used for computing the resonant frequency of A-shaped compact microstrip antennas (ACMAs) operating at UHF band. Firstly, the resonant frequencies of 144 ACMAs with various dimensions and electrical parameters were simulated with the help of IE3D™ based on method of moment (MoM). The ANN, ANFIS and SVM models for computing the resonant frequency were then built by considering the simulation data. 124 simulated ACMAs were utilized for training and the remaining 20 ACMAs were used for testing the ANN, ANFIS and SVM models. The performance of the ANN, ANFIS and SVM models are compared in the training and test process. The average percentage errors (APE) regarding the computed resonant frequencies for training of the ANN, ANFIS and SVM were obtained as 0.457%, 0.399% and 0.600%, respectively. The constructed models were then tested and APE values as 0.601% for ANN, 0.744% for ANFIS and 0.623% for SVM were achieved. The results obtained here show that ANN, ANFIS and SVM methods can be successfully applied to compute the resonant frequency of ACMAs, since they are useful and versatile methods that yield accurate results.
Abstract: Facial expression analysis plays a significant role for
human computer interaction. Automatic analysis of human facial
expression is still a challenging problem with many applications. In
this paper, we propose neuro-fuzzy based automatic facial expression
recognition system to recognize the human facial expressions like
happy, fear, sad, angry, disgust and surprise. Initially facial image is
segmented into three regions from which the uniform Local Binary
Pattern (LBP) texture features distributions are extracted and
represented as a histogram descriptor. The facial expressions are
recognized using Multiple Adaptive Neuro Fuzzy Inference System
(MANFIS). The proposed system designed and tested with JAFFE
face database. The proposed model reports 94.29% of classification
accuracy.
Abstract: This paper deals with the application of artificial
neural network (ANN) and fuzzy based Adaptive Neuro Fuzzy
Inference System(ANFIS) approach to Load Frequency Control
(LFC) of multi unequal area hydro-thermal interconnected power
system. The proposed ANFIS controller combines the advantages of
fuzzy controller as well as quick response and adaptability nature of
ANN. Area-1 and area-2 consists of thermal reheat power plant
whereas area-3 and area-4 consists of hydro power plant with electric
governor. Performance evaluation is carried out by using intelligent
controller like ANFIS, ANN and Fuzzy controllers and conventional
PI and PID control approaches. To enhance the performance of
intelligent and conventional controller sliding surface is included.
The performances of the controllers are simulated using
MATLAB/SIMULINK package. A comparison of ANFIS, ANN,
Fuzzy, PI and PID based approaches shows the superiority of
proposed ANFIS over ANN & fuzzy, PI and PID controller for 1%
step load variation.
Abstract: As the network based technologies become
omnipresent, demands to secure networks/systems against threat
increase. One of the effective ways to achieve higher security is
through the use of intrusion detection systems (IDS), which are a
software tool to detect anomalous in the computer or network. In this
paper, an IDS has been developed using an improved machine
learning based algorithm, Locally Linear Neuro Fuzzy Model
(LLNF) for classification whereas this model is originally used for
system identification. A key technical challenge in IDS and LLNF
learning is the curse of high dimensionality. Therefore a feature
selection phase is proposed which is applicable to any IDS. While
investigating the use of three feature selection algorithms, in this
model, it is shown that adding feature selection phase reduces
computational complexity of our model. Feature selection algorithms
require the use of a feature goodness measure. The use of both a
linear and a non-linear measure - linear correlation coefficient and
mutual information- is investigated respectively
Abstract: This paper presents the development and application of an adaptive neuro fuzzy inference system (ANFIS) based intelligent hybrid neuro fuzzy controller for automatic generation control (AGC) of two-area interconnected thermal power system with reheat non linearity. The dynamic response of the system has been studied for 1% step load perturbation in area-1. The performance of the proposed neuro fuzzy controller is compared against conventional proportional-integral (PI) controller, state feedback linear quadratic regulator (LQR) controller and fuzzy gain scheduled proportionalintegral (FGSPI) controller. Comparative analysis demonstrates that the proposed intelligent neuro fuzzy controller is the most effective of all in improving the transients of frequency and tie-line power deviations against small step load disturbances. Simulations have been performed using Matlab®.
Abstract: In this paper, Neuro-Fuzzy based Fuzzy Subtractive
Clustering Method (FSCM) and Self Tuning Fuzzy PD-like
Controller (STFPDC) were used to solve non-linearity and trajectory
problems of pitch AND yaw angles of Twin Rotor MIMO system
(TRMS). The control objective is to make the beams of TRMS reach
a desired position quickly and accurately. The proposed method
could achieve control objectives with simpler controller. To simplify
the complexity of STFPDC, ANFIS based FSCM was used to
simplify the controller and improve the response. The proposed
controllers could achieve satisfactory objectives under different input
signals. Simulation results under MATLAB/Simulink® proved the
improvement of response and superiority of simplified STFPDC on
Fuzzy Logic Controller (FLC).
Abstract: The prediction of financial time series is a very
complicated process. If the efficient market hypothesis holds, then the predictability of most financial time series would be a rather
controversial issue, due to the fact that the current price contains already all available information in the market. This paper extends
the Adaptive Neuro Fuzzy Inference System for High Frequency
Trading which is an expert system that is capable of using fuzzy reasoning combined with the pattern recognition capability of neural networks to be used in financial forecasting and trading in high
frequency. However, in order to eliminate unnecessary input in the
training phase a new event based volatility model was proposed.
Taking volatility and the scaling laws of financial time series into consideration has brought about the development of the Intraday Seasonality Observation Model. This new model allows the observation of specific events and seasonalities in data and subsequently removes any unnecessary data. This new event based
volatility model provides the ANFIS system with more accurate input
and has increased the overall performance of the system.
Abstract: The design of Automatic Generation Control (AGC) system plays a vital role in automation of power system. This paper proposes Hybrid Neuro Fuzzy (HNF) approach for AGC of two-area interconnected reheat thermal power system with the consideration of Generation Rate Constraint (GRC). The advantage of proposed controller is that it can handle the system non-linearities and at the same time the proposed approach is faster than conventional controllers. The performance of HNF controller has been compared with that of both conventional Proportional Integral (PI) controller as well as Fuzzy Logic Controller (FLC) both in the absence and presence of Generation Rate Constraint (GRC). System performance is examined considering disturbance in each area of interconnected power system.
Abstract: The main objective of Automatic Generation Control (AGC) is to balance the total system generation against system load losses so that the desired frequency and power interchange with neighboring systems is maintained. Any mismatch between generation and demand causes the system frequency to deviate from its nominal value. Thus high frequency deviation may lead to system collapse. This necessitates a very fast and accurate controller to maintain the nominal system frequency. This paper deals with a novel approach of artificial intelligence (AI) technique called Hybrid Neuro-Fuzzy (HNF) approach for an (AGC). The advantage of this controller is that it can handle the non-linearities at the same time it is faster than other conventional controllers. The effectiveness of the proposed controller in increasing the damping of local and inter area modes of oscillation is demonstrated in a two area interconnected power system. The result shows that intelligent controller is having improved dynamic response and at the same time faster than conventional controller.
Abstract: Software estimation accuracy is among the greatest
challenges for software developers. This study aimed at building and
evaluating a neuro-fuzzy model to estimate software projects
development time. The forty-one modules developed from ten
programs were used as dataset. Our proposed approach is compared
with fuzzy logic and neural network model and Results show that the
value of MMRE (Mean of Magnitude of Relative Error) applying
neuro-fuzzy was substantially lower than MMRE applying fuzzy
logic and neural network.
Abstract: In the current research, neuro-fuzzy model and regression model was developed to predict Material Removal Rate in Electrical Discharge Machining process for AISI D2 tool steel with copper electrode. Extensive experiments were conducted with various levels of discharge current, pulse duration and duty cycle. The experimental data are split into two sets, one for training and the other for validation of the model. The training data were used to develop the above models and the test data, which was not used earlier to develop these models were used for validation the models. Subsequently, the models are compared. It was found that the predicted and experimental results were in good agreement and the coefficients of correlation were found to be 0.999 and 0.974 for neuro fuzzy and regression model respectively
Abstract: In this paper, we use nonlinear system identification method to predict and detect process fault of a cement rotary kiln. After selecting proper inputs and output, an input-output model is identified for the plant. To identify the various operation points in the
kiln, Locally Linear Neuro-Fuzzy (LLNF) model is used. This model is trained by LOLIMOT algorithm which is an incremental treestructure
algorithm. Then, by using this method, we obtained 3
distinct models for the normal and faulty situations in the kiln. One of the models is for normal condition of the kiln with 15 minutes
prediction horizon. The other two models are for the two faulty situations in the kiln with 7 minutes prediction horizon are presented.
At the end, we detect these faults in validation data. The data collected from White Saveh Cement Company is used for in this study.
Abstract: Local Linear Neuro-Fuzzy Models (LLNFM) like other neuro- fuzzy systems are adaptive networks and provide robust learning capabilities and are widely utilized in various applications such as pattern recognition, system identification, image processing and prediction. Local linear model tree (LOLIMOT) is a type of Takagi-Sugeno-Kang neuro fuzzy algorithm which has proven its efficiency compared with other neuro fuzzy networks in learning the nonlinear systems and pattern recognition. In this paper, a dedicated reconfigurable and parallel processing hardware for LOLIMOT algorithm and its applications are presented. This hardware realizes on-chip learning which gives it the capability to work as a standalone device in a system. The synthesis results on FPGA platforms show its potential to improve the speed at least 250 of times faster than software implemented algorithms.
Abstract: This paper presents application artificial intelligent (AI) techniques, namely artificial neural network (ANN), adaptive neuro fuzzy interface system (ANFIS), to estimate the real power transfer between generators and loads. Since these AI techniques adopt supervised learning, it first uses modified nodal equation method (MNE) to determine real power contribution from each generator to loads. Then the results of MNE method and load flow information are utilized to estimate the power transfer using AI techniques. The 25-bus equivalent system of south Malaysia is utilized as a test system to illustrate the effectiveness of both AI methods compared to that of the MNE method. The mean squared error of the estimate of ANN and ANFIS power transfer allocation methods are 1.19E-05 and 2.97E-05, respectively. Furthermore, when compared to MNE method, ANN and ANFIS methods computes generator contribution to loads within 20.99 and 39.37msec respectively whereas the MNE method took 360msec for the calculation of same real power transfer allocation.