Hybrid TOA/AOA Schemes for Mobile Location in Cellular Communication Systems

Wireless location is to determine the mobile station (MS) location in a wireless cellular communications system. When fewer base stations (BSs) may be available for location purposes or the measurements with large errors in non-line-of-sight (NLOS) environments, it is necessary to integrate all available heterogeneous measurements to achieve high location accuracy. This paper illustrates a hybrid proposed schemes that combine time of arrival (TOA) at three BSs and angle of arrival (AOA) information at the serving BS to give a location estimate of the MS. The proposed schemes mitigate the NLOS effect simply by the weighted sum of the intersections between three TOA circles and the AOA line without requiring a priori information about the NLOS error. Simulation results show that the proposed methods can achieve better accuracy when compare with Taylor series algorithm (TSA) and the hybrid lines of position algorithm (HLOP).

Evaluation of the Zero Sequence Impedance of Overhead High Voltage Lines

As known, the guard wires of overhead high voltage are usually grounded through the grounding systems of support and of the terminal stations. They do affect the zero sequence impedance value of the line, Z0, which is generally, calculated assuming that the wires guard are at ground potential. In this way it is not considered the effect of the resistances of earth of supports and stations. In this work is formed a formula for the calculation of Z0 which takes account of said resistances. Is also proposed a method of calculating the impedance zero sequence overhead lines in which, in various sections or spans, the guard wires are connected to the supports, or isolated from them, or are absent. Parametric analysis is given for lines 220 kV and 400 kV, which shows the extent of the errors made with traditional methods of calculation.

Transmission Mains Earthing Design: Under Ground to Over Head Pole Transition

The demand on High voltage (HV) infrastructures is growing due to the corresponding growth in industries and population. New or upgraded HV infrastructure has safety implications since Transmission mains usually occupy the same easement in the vicinity of neighbouring residents. Transmission mains consist of underground (UG) and overhead (OH) sections and the transition between the UG and OH section is known as the UGOH pole. The existence of two transmission mains in the same easement can dictate to resort to more complicated earthing design in order to mitigate the effect of AC interference, and in some cases it can also necessitates completing a Split Study of the system. This paper provides an overview of the AC interference, Split Study and the earthing of an underground feeder including the UGOH pole .In addition, this paper discusses the use of different link boxes on the UG feeder and presents a case study that represent a clear example of the Ac interference and Split factor. Finally, a few recommendations are provided to achieve a safety zone in the area beyond the boundary of the HV system.

Carbonate Microfacies Analysis of Sinjar Formation from Qara Dagh Mountains, South–West of Sulaimani City, Kurdistan Region, Iraq

The paper describes the carbonate microfacies identified in the Sinjar Formation (Late Paleocene–Early Eocene) cropping out in Qara Dagh Mountain, near Sulekan Village approximately 20km south–west of Sulaimani (Iraq). One section (62m thick) has been measured in the field and closely sampled to undertake detailed microfaciesal and micropalaeontological studies to determine the formation-s age and environment of deposition. A samples were collected illustrating all the lithological changes along the section. The limestone in the studied area is hard and extremely rich in large foraminifers (soritids, rotaliids, nummulites, miliolids) and green algae (dasycladales). The investigation of the thin sections allowed us to identify the carbonate microfacies (18 types and subtypes) and the micropaleontological association (foraminifers and green algae), to determine the age of formation and to reconstruct the paleoenvironment of deposition (fore-reef, reef, back-reef). Based on the field observations and the studied thin sections, we determined three Units of a carbonate platform (I, II and III) from the base to the top of the section: Unit I with coralgal associations, Unit II is dominated by larger foraminifers and haracterized by the absence of coralgal associations, while Unit III is dominated by small foraminifers (mostly miliolids), peloids and green algae. It is partially dolomitized.

Grid Learning; Computer Grid Joins to e- Learning

According to development of communications and web-based technologies in recent years, e-Learning has became very important for everyone and is seen as one of most dynamic teaching methods. Grid computing is a pattern for increasing of computing power and storage capacity of a system and is based on hardware and software resources in a network with common purpose. In this article we study grid architecture and describe its different layers. In this way, we will analyze grid layered architecture. Then we will introduce a new suitable architecture for e-Learning which is based on grid network, and for this reason we call it Grid Learning Architecture. Various sections and layers of suggested architecture will be analyzed; especially grid middleware layer that has key role. This layer is heart of grid learning architecture and, in fact, regardless of this layer, e-Learning based on grid architecture will not be feasible.

Deoiling Hydrocyclones Flow Field-A Comparison between k-Epsilon and LES

In this research a comparison between k-epsilon and LES model for a deoiling hydrocyclone is conducted. Flow field of hydrocyclone is obtained by three-dimensional simulations with OpenFOAM code. Potential of prediction for both methods of this complex swirl flow is discussed. Large eddy simulation method results have more similarity to experiment and its results are presented in figures from different hydrocyclone cross sections.

Can Physical Activity and Dietary Fat Intake Influence Body Mass Index in a Cross-sectional Correlational Design?

The purpose of this study was to determine the influence of physical activity and dietary fat intake on Body Mass Index (BMI) of lecturers within a higher learning institutionalized setting. The study adopted a Cross-sectional Correlational Design and included 120 lecturers selected proportionately by simple random sampling techniques from a population of 600 lecturers. Data was collected using questionnaires, which had sections including physical activity checklist adopted from the international physical activity questionnaire (IPAQ), 24-hour food recall, anthropometric measurements mainly weight and height. Analysis involved the use of bivariate correlations and linear regression. A significant inverse association was registered between BMI and duration (in minutes) spent doing moderate intense physical activity per day (r=-0.322, p

Curvature Ductility Factor of Rectangular Sections Reinforced Concrete Beams

The present work presents a method of calculating the ductility of rectangular sections of beams considering nonlinear behavior of concrete and steel. This calculation procedure allows us to trace the curvature of the section according to the bending moment, and consequently deduce ductility. It also allowed us to study the various parameters that affect the value of the ductility. A comparison of the effect of maximum rates of tension steel, adopted by the codes, ACI [1], EC8 [2] and RPA [3] on the value of the ductility was made. It was concluded that the maximum rate of steels permitted by the ACI [1] codes and RPA [3] are almost similar in their effect on the ductility and too high. Therefore, the ductility mobilized in case of an earthquake is low, the inverse of code EC8 [2]. Recommendations have been made in this direction.

Traffic Signal Coordinated Control Optimization: A Case Study

In the urban traffic network, the intersections are the “bottleneck point" of road network capacity. And the arterials are the main body in road network and the key factor which guarantees the normal operation of the city-s social and economic activities. The rapid increase in vehicles leads to seriously traffic jam and cause the increment of vehicles- delay. Most cities of our country are traditional single control system, which cannot meet the need for the city traffic any longer. In this paper, Synchro6.0 as a platform to minimize the intersection delay, optimizesingle signal cycle and split for Zhonghua Street in Handan City. Meanwhile, linear control system uses to optimize the phase for the t arterial road in this system. Comparing before and after use the control, capacities and service levels of this road and the adjacent road have improved significantly.

Phenomenological and Semi-microscopic Analysis for Elastic Scattering of Protons on 6,7Li

Analysis of the elastic scattering of protons on 6,7Li nuclei has been done in the framework of the optical model at the beam energies up to 50 MeV. Differential cross sections for the 6,7Li + p scattering were measured over the proton laboratory–energy range from 400 to 1050 keV. The elastic scattering of 6,7Li+p data at different proton incident energies have been analyzed using singlefolding model. In each case the real potential obtained from the folding model was supplemented by a phenomenological imaginary potential, and during the fitting process the real potential was normalized and the imaginary potential optimized. Normalization factor NR is calculated in the range between 0.70 and 0.84.

Food Security in India: A Case Study of Kandi Region of Punjab

Banishing hunger from the face of earth has been frequently expressed in various international, national and regional level conferences since 1974. Providing food security has become important issue across the world particularly in developing countries. In a developing country like India, where growth rate of population is more than that of the food grains production, food security is a question of great concern. According to the International Food Policy Research Institute's Global Hunger Index, 2011, India ranks 67 of the 81 countries of the world with the worst food security status. After Green Revolution, India became a food surplus country. Its production has increased from 74.23 million tonnes in 1966-67 to 257.44 million tonnes in 2011-12. But after achieving selfsufficiency in food during last three decades, the country is now facing new challenges due to increasing population, climate change, stagnation in farm productivity. Therefore, the main objective of the present paper is to examine the food security situation at national level in the country and further to explain the paradox of food insecurity in a food surplus state of India i.e in Punjab at micro level. In order to achieve the said objectives, secondary data collected from the Ministry of Agriculture and the Agriculture department of Punjab State was analyzed. The result of the study showed that despite having surplus food production the country is still facing food insecurity problem at micro level. Within the Kandi belt of Punjab state, the area adjacent to plains is food secure while the area along the hills falls in food insecure zone. The present paper is divided into following three sections (i) Introduction, (ii) Analysis of food security situation at national level as well as micro level (Kandi belt of Punjab State) (iii) Concluding Observations

Production of As Isotopes in the Interaction of natGe with 14-30 MeV Protons

Cross sections of As radionuclides in the interaction of natGe with 14-30 MeV protons have been deduced by off-line y-ray spectroscopy to find optimal reaction channels leading to radiotracers for positron emission tomography. The experimental results were compared with the previous results and those estimated by the compound nucleus reaction model.

Experimental Investigation on Cold-formed Steel Wall Plate System

A series of tests on cold-formed steel (CFS) wall plate system subjected to uplift force at the mid span of the wall plate is presented. The aim of the study was to study the behaviour and identify the modes of failure of CFS wall plate system. Two parameters were considered in these studies: 1) different dimension of U-bracket at the supports and 2) different sizes of lipped C-channel. The lipped C-channels used were C07508, C07512 and C10012. The dimensions of the leg of U-bracket were 50x35 mm and 50x60 mm respectively, where 25 mm clearance was provided to the connections for specimens with clearance. Results show that specimens with and without clearance experienced the same mode of failure. Failure began with the yielding of the connectors followed by distortional buckling of the wall plate. However, when C075 sections were used as wall plate, the system behaved differently. There was a large deformation in the wall plate and failure began in the distortional buckling of the wall plate followed by bearing of the connecting plates at the supports (U-bracket). The ultimate strength of the system also decreased dramatically when C075 sections were used.

Numerical Analysis of the Influence of Airfoil Asymmetry on VAWT Performance

This paper presents a model for the evaluation of energy performance and aerodynamic forces acting on a three-bladed small vertical axis Darrieus wind turbine depending on blade chord curvature with respect to rotor axis. The adopted survey methodology is based on an analytical code coupled to a solid modeling software, capable of generating the desired blade geometry depending on the blade design geometric parameters, which is linked to a finite volume CFD code for the calculation of rotor performance. After describing and validating the model with experimental data, the results of numerical simulations are proposed on the bases of two different blade profile architectures, which are respectively characterized by a straight chord and by a curved one, having a chord radius equal to rotor external circumference. A CFD campaign of analysis is completed for three blade-candidate airfoil sections, that is the recently-developed DU 06-W-200 cambered blade profile, a classical symmetrical NACA 0021 and its derived cambered airfoil, characterized by a curved chord, having a chord radius equal to rotor external circumference. The effects of blade chord curvature on angle of attack, blade tangential and normal forces are first investigated and then the overall rotor torque and power are analyzed as a function of blade azimuthal position, achieving a numerical quantification of the influence of blade camber on overall rotor performance.

The Policy Improvement for Developing OTOP under the Context of Changing into ASEAN Economic Community (AEC)

The development of One Tambon One Product (OTOP) became the policy of the government in 1997 after the former Prime Minister had been in power. The strategy of sections is currently set for the policy. OTOP has become the part of the way of community lives around the country. OTOP may be developed under changing into ASEAN economic community in 2015 because of the flow of capitals, productions, and many workers in the region. All sectors are improved for the change. The purposes of study were to study the strength and weakness of the OTOP-creating process via its policy and to lead to the strategy to be able to apply before changing. The methodology is qualitative to study its policy including document and to interview experienced persons. The findings showed that the effort of improvement of all sectors obviously involves with OTOP development. Particularly, the strategic administration of OTOP is in every level of the state, central sector, region, and community.

Effect of Increasing Road Light Luminance on Night Driving Performance of Older Adults

The main objective of this study was to determine if a minimal increase in road light level (luminance) could lead to improved driving performance among older adults. Older, middleaged and younger adults were tested in a driving simulator following vision and cognitive screening. Comparisons were made for the performance of simulated night driving under two road light conditions (0.6 and 2.5 cd/m2). At each light level, the effects of self reported night driving avoidance were examined along with the vision/cognitive performance. It was found that increasing road light level from 0.6 cd/m2 to 2.5 cd/m2 resulted in improved recognition of signage on straight highway segments. The improvement depends on different driver-related factors such as vision and cognitive abilities, and confidence. On curved road sections, the results showed that driver-s performance worsened. It is concluded that while increasing road lighting may be helpful to older adults especially for sign recognition, it may also result in increased driving confidence and thus reduced attention in some driving situations.

Effect of Valve Pressure Drop in Exergy Analysis of C2+ Recovery Plants Refrigeration Cycles

This paper provides an exergy analysis of the multistage refrigeration cycle used for C2+ recovery plant. The behavior of an industrial refrigeration cycle with refrigerant propane has been investigated by the exergy method. A computational model based on the exergy analysis is presented for the investigation of the effects of the valves on the exergy losses, the second law of efficiency, and the coefficient of performance (COP) of a vapor compression refrigeration cycle. The equations of exergy destruction and exergetic efficiency for the main cycle components such as evaporators, condensers, compressors, and expansion valves are developed. The relations for the total exergy destruction in the cycle and the cycle exergetic efficiency are obtained. An ethane recovery unit with its refrigeration cycle has been simulated to prepare the exergy analysis. Using a typical actual work input value; the exergetic efficiency of the refrigeration cycle is determined to be 39.90% indicating a great potential for improvements. The simulation results reveal that the exergetic efficiencies of the heat exchanger and expansion sections get the lowest rank among the other compartments of refrigeration cycle. Refrigeration calculations have been carried out through the analysis of T–S and P–H diagrams where coefficient of performance (COP) was obtained as 1.85. The novelty of this article includes the effect and sensitivity analysis of molar flow, pressure drops and temperature on the exergy efficiency and coefficient of performance of the cycle.

Fabrication and Analysis of Bulk SiCp Reinforced Aluminum Metal Matrix Composites using Friction Stir Process

In this study, Friction Stir Processing (FSP) a recent grain refinement technique was employed to disperse micron-sized (2 *m) SiCp particles into aluminum alloy AA6063. The feasibility to fabricate bulk composites through FSP was analyzed and experiments were conducted at different traverse speeds and wider volumes of the specimens. Micro structural observation were carried out by employing optical microscopy test of the cross sections in both parallel and perpendicular to the tool traverse direction. Mechanical property including micro hardness was evaluated in detail at various regions on the specimen. The composites had an excellent bonding with aluminum alloy substrate and a significant increase of 30% in the micro hardness value of metal matrix composite (MMC) as to that of the base metal has observed. The observations clearly indicate that SiC particles were uniformly distributed within the aluminum matrix.

Deformation Mechanisms at Elevated Temperatures: Influence of Momenta and Energy in the Single Impact Test

Within this work High Temperature Single Impact Studies were performed to evaluate deformation mechanisms at different energy and momentum levels. To show the influence of different microstructures and hardness levels and their response to single impacts four different materials were tested at various temperatures up to 700°C. One carbide reinforced NiCrBSi based Metal Matrix Composite and three different steels were tested. The aim of this work is to determine critical energies for fracture appearance and the materials response at different energy and momenta levels. Critical impact loadings were examined at elevated temperatures to limit operating conditions in impact dominated regimes at elevated temperatures. The investigations on the mechanisms were performed using different means of microscopy at the surface and in metallographic cross sections. Results indicate temperature dependence of the occurrence of cracks in hardphase rich materials, such as Metal Matrix Composites High Speed Steels and the influence of different impact momenta at constant energies on the deformation of different steels.