Mimicking Morphogenesis for Robust Behaviour of Cellular Architectures

Morphogenesis is the process that underpins the selforganised development and regeneration of biological systems. The ability to mimick morphogenesis in artificial systems has great potential for many engineering applications, including production of biological tissue, design of robust electronic systems and the co-ordination of parallel computing. Previous attempts to mimick these complex dynamics within artificial systems have relied upon the use of evolutionary algorithms that have limited their size and complexity. This paper will present some insight into the underlying dynamics of morphogenesis, then show how to, without the assistance of evolutionary algorithms, design cellular architectures that converge to complex patterns.

Somatic Embryogenesis for Agropyron cristatum on Murashige and Skoog Medium

Agropyron cristatum L. Gaertn. is a native grass of semiarid region in Iran which is quit resistant to cool and drought climate and withstand heavy grazing. This species has close phylogenetic relationship with Triticum and Hordeum. In this research, the effect of seven different concentrations of growth regulator 2,4-D on callus production and somatic embryogenesis of A. cristatum was investigated on Murashige and Skoog medium. The results showed that the rate of callus, embryo and neomorph were highest in 1 mg L-1 2,4-D. Callus production was increased in 1 mg L-1 2,4-D but dramatically decreased at 5.5 and 9 mg L-1 2,4-D. The somatic embryos were observed at 1 and 4 mg L-1 2,4-D but matured embryos and plantlet were only occurred at 1 mg L-1 2,4-D. There were significant differences between 1 mg L-1 2,4-D and other treatments for producing globular and torpedo embryos, plantlet, rooted callus and number of roots (p

Survival of Neutrino Mass Models in Nonthermal Leptogenesis

The Constraints imposed by non-thermal leptogenesis on the survival of the neutrino mass models describing the presently available neutrino mass patterns, are studied numerically. We consider the Majorana CP violating phases coming from right-handed Majorana mass matrices to estimate the baryon asymmetry of the universe, for different neutrino mass models namely quasi-degenerate, inverted hierarchical and normal hierarchical models, with tribimaximal mixings. Considering two possible diagonal forms of Dirac neutrino mass matrix as either charged lepton or up-quark mass matrix, the heavy right-handed mass matrices are constructed from the light neutrino mass matrix. Only the normal hierarchical model leads to the best predictions of baryon asymmetry of the universe, consistent with observations in non-thermal leptogenesis scenario.

Mucosal- Submucosal Changes in Rabbit Duodenum during Development

The sequential morphologic changes of rabbit duodenal mucosa-submucosa were studied from primodial stage to birth in 15 fetuses and during the early days of life in 21 rabbit newborns till maturity using light, scanning and transmission electron microscopy. Fetal rabbit duodenum develops from a simple tube of stratified epithelium to a tube containing villus and intervillus regions of simple columnar epithelium. By day 21 of gestation, the first rudimentary villi were appeared and by day 24 the first true villi were appeared. The Crypts of Lieberkuhn did not appear until birth. By the first day of postnatal life the duodenal glands appeared. The histological maturity of the rabbit small intestine occurred one month after birth. In conclusion, at all stages, the sequential morphologic changes of the rabbit small intestine developed to meet the structural and physiological demands during the fetal stage to be prepared to extra uterine life.

A Pairwise-Gaussian-Merging Approach: Towards Genome Segmentation for Copy Number Analysis

Segmentation, filtering out of measurement errors and identification of breakpoints are integral parts of any analysis of microarray data for the detection of copy number variation (CNV). Existing algorithms designed for these tasks have had some successes in the past, but they tend to be O(N2) in either computation time or memory requirement, or both, and the rapid advance of microarray resolution has practically rendered such algorithms useless. Here we propose an algorithm, SAD, that is much faster and much less thirsty for memory – O(N) in both computation time and memory requirement -- and offers higher accuracy. The two key ingredients of SAD are the fundamental assumption in statistics that measurement errors are normally distributed and the mathematical relation that the product of two Gaussians is another Gaussian (function). We have produced a computer program for analyzing CNV based on SAD. In addition to being fast and small it offers two important features: quantitative statistics for predictions and, with only two user-decided parameters, ease of use. Its speed shows little dependence on genomic profile. Running on an average modern computer, it completes CNV analyses for a 262 thousand-probe array in ~1 second and a 1.8 million-probe array in 9 seconds

Intragenic MicroRNAs Binding Sites in MRNAs of Genes Involved in Carcinogenesis

MiRNAs participate in gene regulation of translation. Some studies have investigated the interactions between genes and intragenic miRNAs. It is important to study the miRNA binding sites of genes involved in carcinogenesis. RNAHybrid 2.1 and ERNAhybrid programmes were used to compute the hybridization free energy of miRNA binding sites. Of these 54 mRNAs, 22.6%, 37.7%, and 39.7% of miRNA binding sites were present in the 5'UTRs, CDSs, and 3'UTRs, respectively. The density of the binding sites for miRNAs in the 5'UTR ranged from 1.6 to 43.2 times and from 1.8 to 8.0 times greater than in the CDS and 3'UTR, respectively. Three types of miRNA interactions with mRNAs have been revealed: 5'- dominant canonical, 3'-compensatory, and complementary binding sites. MiRNAs regulate gene expression, and information on the interactions between miRNAs and mRNAs could be useful in molecular medicine. We recommend that newly described sites undergo validation by experimental investigation.

Pt(IV) Complexes with Polystrene-bound Schiff Bases as Antimicrobial Agent: Synthesis and Characterization

Novel polystrene-bound Schiff bases and their Pt(IV) complexes have been prepared from condensation reaction of polystyrene-A-NH2 with 2-hydroxybenzaldehyde and 5-fluoro-3- bromo-2-hydroxybenzaldehyde. The structures of Pt(IV) complexes with polystyrene including Schiff bases have been determined by elemental analyses, magnetic susceptibility, IR, 1H-NMR, UV-vis, TG/DTA and AAS. The antibacterial and antifungal activities of the synthesized compounds have been studied by the well-diffusion method against some selected microorganisms: (Bacillus cereus spp., Listeria monocytogenes 4b, Micrococcus luteus, Staphylococcus aureus, Staphylococcus epidermis, Brucella abortus, Escherichia coli, Pseudomonas putida spp., Shigella dysenteria type 10, Salmonella typhi H).

A Genetic Algorithm with Priority Selection for the Traveling Salesman Problem

The conventional GA combined with a local search algorithm, such as the 2-OPT, forms a hybrid genetic algorithm(HGA) for the traveling salesman problem (TSP). However, the geometric properties which are problem specific knowledge can be used to improve the search process of the HGA. Some tour segments (edges) of TSPs are fine while some maybe too long to appear in a short tour. This knowledge could constrain GAs to work out with fine tour segments without considering long tour segments as often. Consequently, a new algorithm is proposed, called intelligent-OPT hybrid genetic algorithm (IOHGA), to improve the GA and the 2-OPT algorithm in order to reduce the search time for the optimal solution. Based on the geometric properties, all the tour segments are assigned 2-level priorities to distinguish between good and bad genes. A simulation study was conducted to evaluate the performance of the IOHGA. The experimental results indicate that in general the IOHGA could obtain near-optimal solutions with less time and better accuracy than the hybrid genetic algorithm with simulated annealing algorithm (HGA(SA)).

Multiple Sequence Alignment Using Optimization Algorithms

Proteins or genes that have similar sequences are likely to perform the same function. One of the most widely used techniques for sequence comparison is sequence alignment. Sequence alignment allows mismatches and insertion/deletion, which represents biological mutations. Sequence alignment is usually performed only on two sequences. Multiple sequence alignment, is a natural extension of two-sequence alignment. In multiple sequence alignment, the emphasis is to find optimal alignment for a group of sequences. Several applicable techniques were observed in this research, from traditional method such as dynamic programming to the extend of widely used stochastic optimization method such as Genetic Algorithms (GAs) and Simulated Annealing. A framework with combination of Genetic Algorithm and Simulated Annealing is presented to solve Multiple Sequence Alignment problem. The Genetic Algorithm phase will try to find new region of solution while Simulated Annealing can be considered as an alignment improver for any near optimal solution produced by GAs.

Evaluation of the Microbiological, Chemical and Sensory Quality of Carp Processed by the Sous Vide Method

This study evaluated the microbiological quality and the sensory characteristics of carp fillets processed by the sousvide method when stored at 2 and 10 °C. Four different combinations of sauced–storage were studied then stored at 2 or 10 °C was evaluate periodically sensory, microbiological and chemical quality. Batches stored at 2 °C had lower growth rates of mesophiles and psychrotrophs. Moreover, these counts decreased by increasing the heating temperature and time. Staphylococcus aureus, Bacillus cereus, Clostridium perfringens and Listeria monocytogenes were not found in any of the samples. The heat treatment of 90 °C for 15 min and sauced was the most effective to ensure the safety and extend the shelf-life of sousvide carp preserving its sensory characteristics. This study establishes the microbiological quality of sous vide carp and emphasizes the relevance of the raw materials, heat treatment and storage temperature to ensure the safety of the product.

Pyrite from Zones of Mz-Kz Reactivation of Large Faults on the Eastern Slope of the Ural Mountains, Russia

Pyritisation halos are identified in weathering crusts and unconsolidated formations at five locations within large fault structure of the Urals’ eastern slope. Electron microscopy reveals the presence of inclusions and growths on pyrite faces – normally on cubic pyrite with striations, or combinations of cubes and other forms. Following neogenesis types are established: native elements and intermetallic compounds (including gold and silver), halogenides, sulphides, sulfosalts, tellurides, sulphotellurides, selenides, tungstates, sulphates, phosphates, carbon-based substances. Direct relationship is noted between amount and diversity of such mineral phases, and proximity to and scale of ore-grade mineralization. Gold and silver, both in native form and within tellurides, presence of lead (galena, native lead), native tungsten, and, possibly, molybdenite and sulfosalts can indicate gold-bearing formations. First find of native tungsten in the Urals is for the first time – in crystallised and druse-like form. Link is suggested between unusual mineralization and “reducing” hydrothermal fluids from deep-seated faults at later stages of Urals’ reactivation. 

An Automatic Gridding and Contour Based Segmentation Approach Applied to DNA Microarray Image Analysis

DNA microarray technology is widely used by geneticists to diagnose or treat diseases through gene expression. This technology is based on the hybridization of a tissue-s DNA sequence into a substrate and the further analysis of the image formed by the thousands of genes in the DNA as green, red or yellow spots. The process of DNA microarray image analysis involves finding the location of the spots and the quantification of the expression level of these. In this paper, a tool to perform DNA microarray image analysis is presented, including a spot addressing method based on the image projections, the spot segmentation through contour based segmentation and the extraction of relevant information due to gene expression.

BIDENS: Iterative Density Based Biclustering Algorithm With Application to Gene Expression Analysis

Biclustering is a very useful data mining technique for identifying patterns where different genes are co-related based on a subset of conditions in gene expression analysis. Association rules mining is an efficient approach to achieve biclustering as in BIMODULE algorithm but it is sensitive to the value given to its input parameters and the discretization procedure used in the preprocessing step, also when noise is present, classical association rules miners discover multiple small fragments of the true bicluster, but miss the true bicluster itself. This paper formally presents a generalized noise tolerant bicluster model, termed as μBicluster. An iterative algorithm termed as BIDENS based on the proposed model is introduced that can discover a set of k possibly overlapping biclusters simultaneously. Our model uses a more flexible method to partition the dimensions to preserve meaningful and significant biclusters. The proposed algorithm allows discovering biclusters that hard to be discovered by BIMODULE. Experimental study on yeast, human gene expression data and several artificial datasets shows that our algorithm offers substantial improvements over several previously proposed biclustering algorithms.

Changes in Selected Fuel Properties of Sewage Sludge as a Result of its Storage

The article presents test results on the changes occurring in sewage sludge during the process of its storage. Tests were conducted on mechanically dehydrated sewage sludge derived from large municipal sewage treatment plants equipped with biological sewage treatment systems. In testing presented in the paper the focus was on the basic fuel properties of sewage sludge: moisture content, heat of combustion, carbon share. In the first part of the article the overview of the issues concerning the sewage sludge management is presented and the genesis of tests is explained. Further in the paper, selected results of conducted tests are discussed. Changes in tested parameters were determined in the period of a 10- month sewage storage.

Histogenesis of Rabbit Vallate Papillae

The gustatory system allows animals to distinguish varieties of food and affects greatly the consumption of food, hence the health and growth of animals. In the current study, we investigated the histogenesis of vallate papillae (VLP) in the rabbit tongue using light and scanning electron microscopy. Samples were obtained from rabbit embryos at the embryonic days 16-30 (E16-30), and from newborns until maturity; 6 months. At E16, the first primordia of vallate papillae were observed as small pits on the surface epithelium of the tongue-s root. At E18, the caudal part was prominent with loose mesenchymal tissue core; meanwhile the rostral part of the papilla was remained as a thick mass of epithelial cells. At E20-24, the side epithelium formed the primitive annular groove. At E26, the primitive taste buds appeared only at the papillary surface and reached their maturity by E28. The annular groove started to appear at E26 became more defined at E28. The definitive vallate papillae with substantial number of apparently mature taste buds were observed by the end of the second week. We conclude that the vallate papillae develop early and mature during the early postnatal life.

Identification of PIP Aquaporin Genes from Wheat

There is strong evidence that water channel proteins 'aquaporins (AQPs)' are central components in plant-water relations as well as a number of other physiological parameters. We had previously reported the isolation of 24 plasma membrane intrinsic protein (PIP) type AQPs. However, the gene numbers in rice and the polyploid nature of bread wheat indicated a high probability of further genes in the latter. The present work focused on identification of further AQP isoforms in bread wheat. With the use of altered primer design, we identified five genes homologous, designated PIP1;5b, PIP2;9b, TaPIP2;2, TaPIP2;2a, TaPIP2;2b. Sequence alignments indicate PIP1;5b, PIP2;9b are likely to be homeologues of two previously reported genes while the other three are new genes and could be homeologs of each other. The results indicate further AQP diversity in wheat and the sequence data will enable physical mapping of these genes to identify their genomes as well as genetic to determine their association with any quantitative trait loci (QTLs) associated with plant-water relation such as salinity or drought tolerance.

Application of Genetic Engineering for Chromium Removal from Industrial Wastewater

The treatment of the industrial wastewater can be particularly difficult in the presence of toxic compounds. Excessive concentration of Chromium in soluble form is toxic to a wide variety of living organisms. Biological removal of heavy metals using natural and genetically engineered microorganisms has aroused great interest because of its lower impact on the environment. Ralston metallidurans, formerly known as Alcaligenes eutrophus is a LProteobacterium colonizing industrial wastewater with a high content of heavy metals. Tris-buffered mineral salt medium was used for growing Alcaligenes eutrophus AE104 (pEBZ141). The cells were cultivated for 18 h at 30 oC in Tris-buffered mineral salt medium containing 3 mM disodium sulphate and 46 mM sodium gluconate as the carbon source. The cells were harvested by centrifugation, washed, and suspended in 10 mM Tris HCl, pH 7.0, containing 46 mM sodium gluconate, and 5 mM Chromium. Interaction among induction of chr resistance determinant, and chromate reduction have been demonstrated. Results of this study show that the above bacteria can be very useful for bioremediation of chromium from industrial wastewater.

Biochemical and Multiplex PCR Analysis of Toxic Crystal Proteins to Determine Genes in Bacillus thuringiensis Mutants

The Egyptian Bacillus thuringiensis isolate (M5) produce crystal proteins that is toxic against insects was irradiated with UV light to induce mutants. Upon testing 10 of the resulting mutants for their toxicity against cotton leafworm larvae, the three mutants 62, 64 and 85 proved to be the most toxic ones. Upon testing these mutants along with their parental isolate by SDS-PAGE analysis of spores-crystals proteins as well as vegetative cells proteins, new induced bands appeared in the three mutants by UV radiation and also they showed disappearance of some other bands as compared with the wild type isolate. Multiplex PCR technique, with five sets of specific primers, was used to detect the three types of cryI genes cryIAa, cryIAb and cryIAc. Results showed that these three genes exist, as distinctive bands, in the wild type isolate (M5) as well as in mutants 62 and 85, while the mutant 64 had two distinctive bands of cryIAb and cryIAc genes, and a faint band of cryI Aa gene. Finally, these results revealed that mutant 62 is considered as the promising mutant since it is UV resistant, highly toxic against Spodoptera littoralis and active against a wide range of Lepidopteran insects.

Phenotypes of B Cells Differ in EBV-positive Burkitt-s lymphoma Derived Cell Lines

Epstein-Barr virus (EBV) is implicated in the pathogenesis of the endemic Burkitt-s lymphoma (BL). The EBVpositive BL-derived cell lines initially maintain the original tumor phenotype of EBV infection (latency I, LatI), but most of them drift toward a lymphoblast phenotype of EBV latency III (LatIII) during in vitro culturing. The aim of the present work was to characterize the B-cell subsets in EBV-positive BL cell lines and to verify whether a particular cell subset correlates with the type of EBV infection. The phenotype analysis of two EBV-negative and eleven EBV-positive (three of LatI and eight of LatIII) BL cell lines was performed by polychromatic flow cytomery, based on expression pattern of CD19, CD10, CD38, CD27, and CD5 markers. Two cell subsets, CD19+CD10+ and CD19+CD10-, were defined in LatIII BL cell lines. In both subsets, the CD27 and CD5 cell surface expression was detected in a proportion of the cells.

Identifying New Sequence Features for Exon-Intron Discrimination by Rescaled-Range Frameshift Analysis

For identifying the discriminative sequence features between exons and introns, a new paradigm, rescaled-range frameshift analysis (RRFA), was proposed. By RRFA, two new sequence features, the frameshift sensitivity (FS) and the accumulative penta-mer complexity (APC), were discovered which were further integrated into a new feature of larger scale, the persistency in anti-mutation (PAM). The feature-validation experiments were performed on six model organisms to test the power of discrimination. All the experimental results highly support that FS, APC and PAM were all distinguishing features between exons and introns. These identified new sequence features provide new insights into the sequence composition of genes and they have great potentials of forming a new basis for recognizing the exonintron boundaries in gene sequences.