Variable Guard Channels for Efficient Traffic Management

Guard channels improve the probability of successful handoffs by reserving a number of channels exclusively for handoffs. This concept has the risk of underutilization of radio spectrum due to the fact that fewer channels are granted to originating calls even if these guard channels are not always used, when originating calls are starving for the want of channels. The penalty is the reduction of total carried traffic. The optimum number of guard channels can help reduce this problem. This paper presents fuzzy logic based guard channel scheme wherein guard channels are reorganized on the basis of traffic density, so that guard channels are provided on need basis. This will help in incorporating more originating calls and hence high throughput of the radio spectrum

Use of Detectors Technology for Gamma Ray Issued from Radioactive Isotopes and its Impact on Knowledge of Behavior of the Stationary Case of Solid Phase Holdup

For gamma radiation detection, assemblies having scintillation crystals and a photomultiplier tube, also there is a preamplifier connected to the detector because the signals from photomultiplier tube are of small amplitude. After pre-amplification the signals are sent to the amplifier and then to the multichannel analyser. The multichannel analyser sorts all incoming electrical signals according to their amplitudes and sorts the detected photons in channels covering small energy intervals. The energy range of each channel depends on the gain settings of the multichannel analyser and the high voltage across the photomultiplier tube. The exit spectrum data of the two main isotopes studied ,putting data in biomass program ,process it by Matlab program to get the solid holdup image (solid spherical nuclear fuel)

Optimum Radio Capacity Estimation of a Single-Cell Spread Spectrum MIMO System under Rayleigh Fading Conditions

In this paper, the problem of estimating the optimal radio capacity of a single-cell spread spectrum (SS) multiple-inputmultiple- output (MIMO) system operating in a Rayleigh fading environment is examined. The optimisation between the radio capacity and the theoretically achievable average channel capacity (in the sense of information theory) per user of a MIMO single-cell SS system operating in a Rayleigh fading environment is presented. Then, the spectral efficiency is estimated in terms of the achievable average channel capacity per user, during the operation over a broadcast time-varying link, and leads to a simple novel-closed form expression for the optimal radio capacity value based on the maximization of the achieved spectral efficiency. Numerical results are presented to illustrate the proposed analysis.

Distributed Relay Selection and Channel Choice in Cognitive Radio Network

In this paper, we study the cooperative communications where multiple cognitive radio (CR) transmit-receive pairs competitive maximize their own throughputs. In CR networks, the influences of primary users and the spectrum availability are usually different among CR users. Due to the existence of multiple relay nodes and the different spectrum availability, each CR transmit-receive pair should not only select the relay node but also choose the appropriate channel. For this distributed problem, we propose a game theoretic framework to formulate this problem and we apply a regret-matching learning algorithm which is leading to correlated equilibrium. We further formulate a modified regret-matching learning algorithm which is fully distributed and only use the local information of each CR transmit-receive pair. This modified algorithm is more practical and suitable for the cooperative communications in CR network. Simulation results show the algorithm convergence and the modified learning algorithm can achieve comparable performance to the original regretmatching learning algorithm.

Analysis of Vibration Signal of DC Motor Based on Hilbert-Huang Transform

This paper presents a signal analysis process for improving energy completeness based on the Hilbert-Huang Transform (HHT). Firstly, the vibration signal of a DC Motor obtained by employing an accelerometer is the model used to analyze the signal. Secondly, the intrinsic mode functions (IMFs) and Hilbert spectrum of the decomposed signal are obtained by applying HHT. The results of the IMFs constituent and the original signal are compared and the process of energy loss is discussed. Finally, the differences between Wavelet Transform (WT) and HHT in analyzing the signal are compared. The simulated results reveal the analysis process based on HHT is advantageous for the enhancement of energy completeness.

Comparison of the Parameter using ECG with Bisepctrum Parameter using EEG during General Anesthesia

The measurement of anesthetic depth is necessary in anesthesiology. NN10 is very simple method among the RR intervals analysis methods. NN10 parameter means the numbers of above the 10 ms intervals of the normal to normal RR intervals. Bispectrum analysis is defined as 2D FFT. EEG signal reflected the non-linear peristalsis phenomena according to the change brain function. After analyzing the bispectrum of the 2 dimension, the most significant power spectrum density peaks appeared abundantly at the specific area in awakening and anesthesia state. These points are utilized to create the new index since many peaks appeared at the specific area in the frequency coordinate. The measured range of an index was 0-100. An index is 20-50 at an anesthesia, while the index is 90-60 at the awake. In this paper, the relation between NN10 parameter using ECG and bisepctrum index using EEG is observed to estimate the depth of anesthesia during anesthesia and then we estimated the utility of the anesthetic.

Comparison of Parameterization Methods in Recognizing Spoken Arabic Digits

This paper proposes evaluation of sound parameterization methods in recognizing some spoken Arabic words, namely digits from zero to nine. Each isolated spoken word is represented by a single template based on a specific recognition feature, and the recognition is based on the Euclidean distance from those templates. The performance analysis of recognition is based on four parameterization features: the Burg Spectrum Analysis, the Walsh Spectrum Analysis, the Thomson Multitaper Spectrum Analysis and the Mel Frequency Cepstral Coefficients (MFCC) features. The main aim of this paper was to compare, analyze, and discuss the outcomes of spoken Arabic digits recognition systems based on the selected recognition features. The results acqired confirm that the use of MFCC features is a very promising method in recognizing Spoken Arabic digits.

Unsupervised Segmentation using Fuzzy Logicbased Texture Spectrum for MRI Brain Images

Textures are replications, symmetries and combinations of various basic patterns, usually with some random variation one of the gray-level statistics. This article proposes a new approach to Segment texture images. The proposed approach proceeds in 2 stages. First, in this method, local texture information of a pixel is obtained by fuzzy texture unit and global texture information of an image is obtained by fuzzy texture spectrum. The purpose of this paper is to demonstrate the usefulness of fuzzy texture spectrum for texture Segmentation. The 2nd Stage of the method is devoted to a decision process, applying a global analysis followed by a fine segmentation, which is only focused on ambiguous points. The above Proposed approach was applied to brain image to identify the components of brain in turn, used to locate the brain tumor and its Growth rate.

Investigation of Short Time Scale Variation of Solar Radiation Spectrum in UV, PAR, and NIR Bands due to Atmospheric Aerosol and Water Vapor

Long terms variation of solar insolation had been widely studied. However, its parallel observations in short time scale is rather lacking. This paper aims to investigate the short time scale evolution of solar radiation spectrum (UV, PAR, and NIR bands) due to atmospheric aerosols and water vapors. A total of 25 days of global and diffused solar spectrum ranges from air mass 2 to 6 were collected using ground-based spectrometer with shadowband technique. The result shows that variation of solar radiation is the least in UV fraction, followed by PAR and the most in NIR. Broader variations in PAR and NIR are associated with the short time scale fluctuations of aerosol and water vapors. The corresponding daily evolution of UV, PAR, and NIR fractions implies that aerosol and water vapors variation could also be responsible for the deviation pattern in the Langley-plot analysis.

Performance Comparison and Analysis of Serial Concatenated Convolutional Codes

In this paper, the performance of three types of serial concatenated convolutional codes (SCCC) is compared and analyzed in additive white Gaussian noise (AWGN) channel. In Type I, only the parity bits of outer encoder are passed to inner encoder. In Type II and Type III, both the information bits and the parity bits of outer encoder are transferred to inner encoder. As results of simulation, Type I shows the best bit error rate (BER) performance at low signal-to-noise ratio (SNR). On the other hand, Type III shows the best BER performance at high SNR in AWGN channel. The simulation results are analyzed using the distance spectrum.

Pulsation Suppression Device Design for Reciprocating Compressor

Design and evaluation of reciprocating compressors should include a pulsation study. The object is to ensure that predicted pulsation levels meet guidelines to limit vibration, shaking forces, noise, associated pressure drops, horsepower losses and fabrication cost and time to acceptable levels. This paper explains procedures and recommendations to select and size pulsation suppression devices to obtain optimum arrangement in terms of pulsation, vibration, shaking forces, performance, reliability, safety, operation, maintenance and commercial conditions. Model and advanced formulations for pulsation study are presented. The effect of the full fluid dynamic model on the prediction of pulsation waves and resulting frequency spectrum distributions are discussed. Advanced and optimum methods of controlling pulsations are highlighted. Useful recommendations and guidelines for pulsation control, piping pulsation analysis, pulsation vessel design, shaking forces, low pressure drop orifices, pulsation study report and devices to mitigate pulsation and shaking problems are discussed.

Trispectral Analysis of Voiced Sounds Defective Audition and Tracheotomisian Cases

This paper presents the cepstral and trispectral analysis of a speech signal produced by normal men, men with defective audition (deaf, deep deaf) and others affected by tracheotomy, the trispectral analysis based on parametric methods (Autoregressive AR) using the fourth order cumulant. These analyses are used to detect and compare the pitches and the formants of corresponding voiced sounds (vowel \a\, \i\ and \u\). The first results appear promising, since- it seems after several experimentsthere is no deformation of the spectrum as one could have supposed it at the beginning, however these pathologies influenced the two characteristics: The defective audition influences to the formants contrary to the tracheotomy, which influences the fundamental frequency (pitch).

On Detour Spectra of Some Graphs

The Detour matrix (DD) of a graph has for its ( i , j) entry the length of the longest path between vertices i and j. The DD-eigenvalues of a connected graph G are the eigenvalues for its detour matrix, and they form the DD-spectrum of G. The DD-energy EDD of the graph G is the sum of the absolute values of its DDeigenvalues. Two connected graphs are said to be DD- equienergetic if they have equal DD-energies. In this paper, the DD- spectra of a variety of graphs and their DD-energies are calculated.

Leatherback Turtle (Dermochelys coriacea) after Incubation Eggshell in Andaman Sea, Thailand Study: Microanalysis on Ultrastructure and Elemental Composition

There are few studies on eggshell of leatherback turtle which is endangered species in Thailand. This study was focusing on the ultrastructure and elemental composition of leatherback turtle eggshells collected from Andaman Sea Shore, Thailand during the nesting season using scanning electron microscope (SEM). Three eggshell layers of leatherback turtle; the outer cuticle layer or calcareous layer, the middle layer or middle multistrata layer and the inner fibrous layer were recognized. The outer calcareous layer was thick and porosity which consisted of loose nodular units of various crystal shapes and sizes. The loose attachment between these units resulted in numerous spaces and openings. The middle layer was compact thick with several multistrata and contained numerous openings connecting to both outer cuticle layer and inner fibrous layer. The inner fibrous layer was compact and thin, and composed of numerous reticular fibers. Energy dispersive X-ray microanalysis detector revealed energy spectrum of X-rays character emitted from all elements on each layer. The percentages of all elements were found in the following order: carbon (C) > oxygen (O) > calcium (Ca) > sulfur (S) > potassium (K) > aluminum (Al) > iodine (I) > silicon (Si) > chlorine (Cl) > sodium (Na) > fluorine (F) > phosphorus (P) > magnesium (Mg). Each layer consisted of high percentage of CaCO3 (approximately 98%) implying that it was essential for turtle embryonic development. A significant difference was found in the percentages of Ca and Mo in the 3layers. Moreover, transition metal, metal and toxic non-metal contaminations were found in leatherback turtle eggshell samples. These were palladium (Pd), molybdenum (Mo), copper (Cu), aluminum (Al), lead (Pb), and bromine (Br). The contamination elements were seen in the outer layers except for Mo. All elements were readily observed and mapped using Smiling program. X-ray images which mapped the location of all elements were showed. Calcium containing in the eggshell appeared in high contents and was widely distributing in clusters of the outer cuticle layer to form CaCO3 structure. Moreover, the accumulation of Na and Cl was observed to form NaCl which was widely distributing in 3 eggshell layers. The results from this study would be valuable on assessing the emergent success in this endangered species.

Discrete-time Phase and Delay Locked Loops Analyses in Tracking Mode

Phase locked loops (PLL) and delay locked loops (DLL) play an important role in establishing coherent references (phase of carrier and symbol timing) in digital communication systems. Fully digital receiver including digital carrier synchronizer and symbol timing synchronizer fulfils the conditions for universal multi-mode communication receiver with option of symbol rate setting over several digit places and long-term stability of requirement parameters. Afterwards it is necessary to realize PLL and DLL in synchronizer in digital form and to approach to these subsystems as a discrete representation of analog template. Analysis of discrete phase locked loop (DPLL) or discrete delay locked loop (DDLL) and technique to determine their characteristics based on analog (continuous-time) template is performed in this posed paper. There are derived transmission response and error function for 1st order discrete locked loop and resulting equations and graphical representations for 2nd order one. It is shown that the spectrum translation due to sampling takes effect at frequency characteristics computing for specific values of loop parameters.

Response Spectrum Transformation for Seismic Qualification Testing

Seismic qualification testing for equipments to be mounted on upper storeys of buildings is very demanding in terms of floor spectra. The latter is characterized by high accelerations amplitudes within a narrow frequency band. This article presents a method which permits to cover specified required response spectra beyond the shaking table capability by amplifying the acceleration amplitudes at an appropriate frequency range using a physical intermediate mounted on the platform of the shaker.

Broad-Band Chiral Reflectors based on Nano-Structured Biological Materials

In this work we study the reflection of circularly polarised light from a nano-structured biological material found in the exocuticle of scarabus beetles. This material is made of a stack of ultra-thin (~5 nm) uniaxial layers arranged in a left-handed helicoidal stack, which resonantly reflects circularly polarized light. A chirp in the layer thickness combined with a finite absorption coefficient produce a broad smooth reflectance spectrum. By comparing model calculations and electron microscopy with measured spectra we can explain our observations and quantify most relevant structural parameters.

A Cooperative Weighted Discriminator Energy Detector Technique in Fading Environment

The need in cognitive radio system for a simple, fast, and independent technique to sense the spectrum occupancy has led to the energy detection approach. Energy detector is known by its dependency on noise variation in the system which is one of its major drawbacks. In this paper, we are aiming to improve its performance by utilizing a weighted collaborative spectrum sensing, it is similar to the collaborative spectrum sensing methods introduced previously in the literature. These weighting methods give more improvement for collaborative spectrum sensing as compared to no weighting case. There is two method proposed in this paper: the first one depends on the channel status between each sensor and the primary user while the second depends on the value of the energy measured in each sensor.

High Capacity Spread-Spectrum Watermarking for Telemedicine Applications

This paper presents a new spread-spectrum watermarking algorithm for digital images in discrete wavelet transform (DWT) domain. The algorithm is applied for embedding watermarks like patient identification /source identification or doctors signature in binary image format into host digital radiological image for potential telemedicine applications. Performance of the algorithm is analysed by varying the gain factor, subband decomposition levels, and size of watermark. Simulation results show that the proposed method achieves higher watermarking capacity.

Evaluation of Performance Requirements for Seismic Design of Piping System

The cost of damage to the non-structural systems in critical facilities like nuclear power plants and hospitals can exceed 80% of the total cost of damage during an earthquake. The failure of nonstructural components, especially, piping systems led to leakage of water and subsequent shut-down of hospitals immediately after the event. Consequently, the evaluation of performance of these types of structural configurations has become necessary to mitigate the risk and to achieve reliable designs. This paper focuses on a methodology to evaluate the static and dynamic characteristics of complex actual piping system based on NFPA-13 and SMACNA guidelines. The result of this study revealed that current piping system subjected to design lateral force and design spectrum based on UBC-97 was failed in both cases and mode shapes between piping system and building structure were very different