Abstract: The telemedicine services require correct computing resource management to guarantee productivity and efficiency for medical and non-medical staff. The aim of this study was to examine web management strategies to ensure the availability of resources and services in telemedicine so as to provide medical information management with an accessible strategy. In addition, to evaluate the quality-of-service parameters, the followings were measured: delays, throughput, jitter, latency, available bandwidth, percent of access and denial of services based of web management performance map with profiles permissions and database management. Through 24 different test scenarios, the results show 100% in availability of medical information, in relation to access of medical staff to web services, and quality of service (QoS) of 99% because of network delay and performance of computer network. The findings of this study suggest that the proposed strategy of web management is an ideal solution to guarantee the availability, reliability, and accessibility of medical information. Finally, this strategy offers seven user profile used at telemedicine center of Bogota-Colombia keeping QoS parameters suitable to telemedicine services.
Abstract: Telemedicine services use a large amount of data, most of which are diagnostic images in Digital Imaging and Communications in Medicine (DICOM) and Health Level Seven (HL7) formats. Metadata is generated from each related image to support their identification. This study presents the use of decision trees for the optimization of information search processes for diagnostic images, hosted on the cloud server. To analyze the performance in the server, the following quality of service (QoS) metrics are evaluated: delay, bandwidth, jitter, latency and throughput in five test scenarios for a total of 26 experiments during the loading and downloading of DICOM images, hosted by the telemedicine group server of the Universidad Militar Nueva Granada, Bogotá, Colombia. By applying decision trees as a data mining technique and comparing it with the sequential search, it was possible to evaluate the search times of diagnostic images in the server. The results show that by using the metadata in decision trees, the search times are substantially improved, the computational resources are optimized and the request management of the telemedicine image service is improved. Based on the experiments carried out, search efficiency increased by 45% in relation to the sequential search, given that, when downloading a diagnostic image, false positives are avoided in management and acquisition processes of said information. It is concluded that, for the diagnostic images services in telemedicine, the technique of decision trees guarantees the accessibility and robustness in the acquisition and manipulation of medical images, in improvement of the diagnoses and medical procedures in patients.
Abstract: In telemedicine, the image repository service is important to increase the accuracy of diagnostic support of medical personnel. This study makes comparison between two routing algorithms regarding the quality of service (QoS), to be able to analyze the optimal performance at the time of loading and/or downloading of medical images. This study focused on comparing the performance of Tabu Search with other heuristic and metaheuristic algorithms that improve QoS in telemedicine services in Colombia. For this, Tabu Search and Simulated Annealing heuristic algorithms are chosen for their high usability in this type of applications; the QoS is measured taking into account the following metrics: Delay, Throughput, Jitter and Latency. In addition, routing tests were carried out on ten images in digital image and communication in medicine (DICOM) format of 40 MB. These tests were carried out for ten minutes with different traffic conditions, reaching a total of 25 tests, from a server of Universidad Militar Nueva Granada (UMNG) in Bogotá-Colombia to a remote user in Universidad de Santiago de Chile (USACH) - Chile. The results show that Tabu search presents a better QoS performance compared to Simulated Annealing, managing to optimize the routing of medical images, a basic requirement to offer diagnostic images services in telemedicine.
Abstract: In the course of recent decades, medical imaging has
been dominated by the use of costly film media for review and
archival of medical investigation, however due to developments in
networks technologies and common acceptance of a standard digital
imaging and communication in medicine (DICOM) another approach
in light of World Wide Web was produced. Web technologies
successfully used in telemedicine applications, the combination of
web technologies together with DICOM used to design a web-based
and open source DICOM viewer. The Web server allowance to
inquiry and recovery of images and the images viewed/manipulated
inside a Web browser without need for any preinstalling software.
The dynamic site page for medical images visualization and
processing created by using JavaScript and HTML5 advancements.
The XAMPP ‘apache server’ is used to create a local web server for
testing and deployment of the dynamic site. The web-based viewer
connected to multiples devices through local area network (LAN) to
distribute the images inside healthcare facilities. The system offers a
few focal points over ordinary picture archiving and communication
systems (PACS): easy to introduce, maintain and independently
platforms that allow images to display and manipulated efficiently,
the system also user-friendly and easy to integrate with an existing
system that have already been making use of web technologies. The
wavelet-based image compression technique on which 2-D discrete
wavelet transform used to decompose the image then wavelet
coefficients are transmitted by entropy encoding after threshold to
decrease transmission time, stockpiling cost and capacity. The
performance of compression was estimated by using images quality
metrics such as mean square error ‘MSE’, peak signal to noise ratio
‘PSNR’ and compression ratio ‘CR’ that achieved (83.86%) when
‘coif3’ wavelet filter is used.
Abstract: Connecting health services with technology has a huge demand as people health situations are becoming worse day by day. In fact, engaging new technologies such as Internet of Things (IOT) into the medical services can enhance the patient care services. Specifically, patients suffering from chronic diseases such as cardiac patients need a special care and monitoring. In reality, some efforts were previously taken to automate and improve the patient monitoring systems. However, the previous efforts have some limitations and lack the real-time feature needed for chronic kind of diseases. In this paper, an improved process model for patient monitoring system specialized for cardiac patients is presented. A survey was distributed and interviews were conducted to gather the needed requirements to improve the cardiac patient monitoring system. Business Process Model and Notation (BPMN) language was used to model the proposed process. In fact, the proposed system uses the IOT Technology to assist doctors to remotely monitor and follow-up with their heart patients in real-time. In order to validate the effectiveness of the proposed solution, simulation analysis was performed using Bizagi Modeler tool. Analysis results show performance improvements in the heart monitoring process. For the future, authors suggest enhancing the proposed system to cover all the chronic diseases.
Abstract: Some of the main goals about telecare such as monitoring, treatment, telediagnostic are deployed with the integration of applications with specific appliances. In order to achieve a coherent model to integrate software, hardware, and healthcare systems, different telehealth models with Internet of Things (IoT), cloud computing, artificial intelligence, etc. have been implemented, and their advantages are still under analysis. In this paper, we propose an integrated model based on IoT architecture and cloud computing telehealth center. Analytics module is presented as a solution to control an ideal diagnostic about some diseases. Specific features are then compared with the recently deployed conventional models in telemedicine. The main advantage of this model is the availability of controlling the security and privacy about patient information and the optimization on processing and acquiring clinical parameters according to technical characteristics.
Abstract: In patients with acute lymphoblastic leukaemia (ALL), treatment response is increasingly evaluated with minimal residual disease (MRD) analyses. Flow Cytometry (FCM) is a fast and sensitive method to detect MRD. However, the interpretation of these multi-parametric data requires intensive operator training and experience. This paper presents a pipeline-software, as a ready-to-use FCM-based MRD-assessment tool for the daily clinical practice for patients with ALL. The new tool increases accuracy in assessment of FCM-MRD in samples which are difficult to analyse by conventional operator-based gating since computer-aided analysis potentially has a superior resolution due to utilization of the whole multi-parametric FCM-data space at once instead of step-wise, two-dimensional plot-based visualization. The system developed as a telemedical network reduces the work-load and lab-costs, staff-time needed for training, continuous quality control, operator-based data interpretation. It allows dissemination of automated FCM-MRD analysis to medical centres which have no established expertise for the benefit of an even larger community of diseased children worldwide. We established a telemedical network system for analysis and clinical follow-up and treatment monitoring of Leukaemia. The system is scalable and adapted to link several centres and laboratories worldwide.
Abstract: Access to advanced medical services has been one of the medical challenges faced by our present society especially in distant geographical locations which may be inaccessible. Then the need for telemedicine arises through which live videos of a doctor can be streamed to a patient located anywhere in the world at any time. Patients’ medical records contain very sensitive information which should not be made accessible to unauthorized people in order to protect privacy, integrity and confidentiality. This research work focuses on a more robust security measure which is biometric (fingerprint) as a form of access control to data of patients by the medical specialist/practitioner.
Abstract: In recent years, a wide variety of applications are developed with Support Vector Machines -SVM- methods and Artificial Neural Networks -ANN-. In general, these methods depend on intrusion knowledge databases such as KDD99, ISCX, and CAIDA among others. New classes of detectors are generated by machine learning techniques, trained and tested over network databases. Thereafter, detectors are employed to detect anomalies in network communication scenarios according to user’s connections behavior. The first detector based on training dataset is deployed in different real-world networks with mobile and non-mobile devices to analyze the performance and accuracy over static detection. The vulnerabilities are based on previous work in telemedicine apps that were developed on the research group. This paper presents the differences on detections results between some network scenarios by applying traditional detectors deployed with artificial neural networks and support vector machines.
Abstract: Cloud computing can reduce the start-up expenses of implementing EHR (Electronic Health Records). However, many of the healthcare institutions are yet to implement cloud computing due to the associated privacy and security issues. In this paper, we analyze the challenges and opportunities of implementing cloud computing in healthcare. We also analyze data of over 5000 US hospitals that use Telemedicine applications. This analysis helps to understand the importance of smart phones over the desktop systems in different departments of the healthcare institutions. The wide usage of smartphones and cloud computing allows ubiquitous and affordable access to the health data by authorized persons, including patients and doctors. Cloud computing will prove to be beneficial to a majority of the departments in healthcare. Through this analysis, we attempt to understand the different healthcare departments that may benefit significantly from the implementation of cloud computing.
Abstract: Introduction: The process to build a better safety
culture, methods of error analysis, and preventive measures, starts
with an understanding of the effects when human factors engineering
refer to remote microscopic diagnosis in surgery and specially in
organ transplantation for the remote evaluation of the grafts. It has
been estimated that even in well-organized transplant systems an
average of 8% to 14% of the grafts (G) that arrive at the recipient
hospitals may be considered as diseased, injured, damaged or
improper for transplantation. Digital microscopy adds information on
a microscopic level about the grafts in Organ Transplant (OT), and
may lead to a change in their management. Such a method will
reduce the possibility that a diseased G, will arrive at the recipient
hospital for implantation. Aim: Ergonomics of Digital Microscopy
(DM) based on virtual slides, on Telemedicine Systems (TS) for
Tele-Pathological (TPE) evaluation of the grafts (G) in organ
transplantation (OT). Material and Methods: By experimental
simulation, the ergonomics of DM for microscopic TPE of Renal
Graft (RG), Liver Graft (LG) and Pancreatic Graft (PG) tissues is
analyzed. In fact, this corresponded to the ergonomics of digital
microscopy for TPE in OT by applying Virtual Slide (VS) system for
graft tissue image capture, for remote diagnoses of possible
microscopic inflammatory and/or neoplastic lesions. Experimentation
included: a. Development of an OTE-TS similar Experimental
Telemedicine System (Exp.-TS), b. Simulation of the integration of
TS with the VS based microscopic TPE of RG, LG and PG applying
DM. Simulation of the DM based TPE was performed by 2
specialists on a total of 238 human Renal Graft (RG), 172 Liver Graft
(LG) and 108 Pancreatic Graft (PG) tissues digital microscopic
images for inflammatory and neoplastic lesions on four electronic
spaces of the four used TS. Results: Statistical analysis of specialist‘s
answers about the ability to diagnose accurately the diseased RG, LG
and PG tissues on the electronic space among four TS (A,B,C,D)
showed that DM on TS for TPE in OT is elaborated perfectly on the
ES of a Desktop, followed by the ES of the applied Exp.-TS. Tablet
and Mobile-Phone ES seem significantly risky for the application of
DM in OT (p
Abstract: The health care must be a right for people around the
world, but in order to guarantee the access to all, it is necessary to
overcome geographical barriers. Telemedicine take advantage of
Information Communication Technologies to deploy health care
services around the world. To achieve those goals, it is necessary to
use existing last mile solution to create access for home users, which
is why is necessary to establish the channel characteristics for those
kinds of services. This paper presents an analysis of network
performance of last mile solution for the use of IPTV broadcasting
with the application of streaming for telemedicine apps.
Abstract: The paper presents a novel screening method to
indicate congenital heart diseases (CHD), which otherwise could
remain undetected because of their low level. Therefore, not
belonging to the high-risk population, the pregnancies are not subject
to the regular fetal monitoring with ultrasound echocardiography.
Based on the fact that CHD is a morphological defect of the heart
causing turbulent blood flow, the turbulence appears as a murmur,
which can be detected by fetal phonocardiography (fPCG). The
proposed method applies measurements on the maternal abdomen
and from the recorded sound signal a sophisticated processing
determines the fetal heart murmur. The paper describes the problems
and the additional advantages of the fPCG method including the
possibility of measurements at home and its combination with the
prescribed regular cardiotocographic (CTG) monitoring. The
proposed screening process implemented on a telemedicine system
provides an enhanced safety against hidden cardiac diseases.
Abstract: To develop a reliable and cost effective communication platform for the telemedicine applications, novel antenna design has been presented using bacterial foraging optimization (BFO) technique. The proposed antenna geometry is achieved by etching a modified Koch curve fractal shape at the edges and a square shape slot at the center of the radiating element of a patch antenna. It has been found that the new antenna has achieved 43.79% size reduction and better resonating characteristic than the original patch. Representative results for both simulations and numerical validations are reported in order to assess the effectiveness of the developed methodology.
Abstract: In this paper, we study statistical multiplexing of VBR
video in ATM networks. ATM promises to provide high speed realtime
multi-point to central video transmission for telemedicine
applications in rural hospitals and in emergency medical services.
Video coders are known to produce variable bit rate (VBR) signals
and the effects of aggregating these VBR signals need to be
determined in order to design a telemedicine network infrastructure
capable of carrying these signals. We first model the VBR video
signal and simulate it using a generic continuous-data autoregressive
(AR) scheme. We carry out the queueing analysis by the Fluid
Approximation Model (FAM) and the Markov Modulated Poisson
Process (MMPP). The study has shown a trade off: multiplexing
VBR signals reduces burstiness and improves resource utilization,
however, the buffer size needs to be increased with an associated
economic cost. We also show that the MMPP model and the Fluid
Approximation model fit best, respectively, the cell region and the
burst region. Therefore, a hybrid MMPP and FAM completely
characterizes the overall performance of the ATM statistical
multiplexer. The ramifications of this technology are clear: speed,
reliability (lower loss rate and jitter), and increased capacity in video
transmission for telemedicine. With migration to full IP-based
networks still a long way to achieving both high speed and high
quality of service, the proposed ATM architecture will remain of
significant use for telemedicine.
Abstract: The main objective of this paper is to provide an efficient tool for delineating brain tumors in three-dimensional magnetic resonance images. To achieve this goal, we use basically a level-sets approach to delineating three-dimensional brain tumors. Then we introduce a compression plan of 3D brain structures based for the meshes simplification, adapted for time to the specific needs of the telemedicine and to the capacities restricted by network communication. We present here the main stages of our system, and preliminary results which are very encouraging for clinical practice.
Abstract: Many contemporary telemedical applications rely on
regular consultations over the phone or video conferencing which
consumes valuable resources such as the time of the doctors. Some
applications or treatments allow automated diagnostics on the patient
side which only notifies the doctors in case a significant worsening
of patient’s condition is measured.
Such programs can save valuable resources but an important
implementation issue is how to ensure effective and cheap diagnostics
on the patient side. First, specific diagnostic devices on patient side
are expensive and second, they need to be user-˜friendly to encourage
patient’s cooperation and reduce errors in usage which may cause
noise in diagnostic data.
This article proposes the use of modern smartphones and various
build-in or attachable sensors as universal diagnostic devices applicable
in a wider range of telemedical programs and demonstrates their
application on a case-study – a program for schizophrenic relapse
prevention.
Abstract: Medical image modalities such as computed
tomography (CT), magnetic resonance imaging (MRI), ultrasound
(US), X-ray are adapted to diagnose disease. These modalities
provide flexible means of reviewing anatomical cross-sections and
physiological state in different parts of the human body. The raw
medical images have a huge file size and need large storage
requirements. So it should be such a way to reduce the size of those
image files to be valid for telemedicine applications. Thus the image
compression is a key factor to reduce the bit rate for transmission or
storage while maintaining an acceptable reproduction quality, but it is
natural to rise the question of how much an image can be compressed
and still preserve sufficient information for a given clinical
application. Many techniques for achieving data compression have
been introduced. In this study, three different MRI modalities which
are Brain, Spine and Knee have been compressed and reconstructed
using wavelet transform. Subjective and objective evaluation has
been done to investigate the clinical information quality of the
compressed images. For the objective evaluation, the results show
that the PSNR which indicates the quality of the reconstructed image
is ranging from (21.95 dB to 30.80 dB, 27.25 dB to 35.75 dB, and
26.93 dB to 34.93 dB) for Brain, Spine, and Knee respectively. For
the subjective evaluation test, the results show that the compression
ratio of 40:1 was acceptable for brain image, whereas for spine and
knee images 50:1 was acceptable.
Abstract: Lossless compression schemes with secure
transmission play a key role in telemedicine applications that helps in
accurate diagnosis and research. Traditional cryptographic algorithms
for data security are not fast enough to process vast amount of data.
Hence a novel Secured lossless compression approach proposed in
this paper is based on reversible integer wavelet transform, EZW
algorithm, new modified runlength coding for character
representation and selective bit scrambling. The use of the lifting
scheme allows generating truly lossless integer-to-integer wavelet
transforms. Images are compressed/decompressed by well-known
EZW algorithm. The proposed modified runlength coding greatly
improves the compression performance and also increases the
security level. This work employs scrambling method which is fast,
simple to implement and it provides security. Lossless compression
ratios and distortion performance of this proposed method are found
to be better than other lossless techniques.
Abstract: Telemedicine is brought to life by contemporary changes of our world and summarizes the entire range of services that are at the crossroad of traditional healthcare and information technology. It is believed that eHealth can help in solving critical issues of rising costs, care for ageing and housebound population, staff shortage. It is a feasible tool to provide routine as well as specialized health service as it has the potential to improve both the access to and the standard of care. eHealth is no more an optional choice. It has already made quite a way but it still remains a fantastic challenge for the future requiring cooperation and coordination at all possible levels. The strategic objectives of this paper are: 1. To start with an attempt to clarify the mass of terms used nowadays; 2. To answer the question “Who needs eHealth"; 3. To focus on the necessity of bridging telemedicine and medical (health) informatics as well as on the dual relationship between them; as well as 4. To underline the need of networking in understanding, developing and implementing eHealth.