Synthesis and Characterization of Cu-NanoWire Arrays by EMD Using ITO-Template

Nanowire arrays of copper with uniform diameters have been synthesized by potentiostatic electrochemical metal deposition (EMD) of copper sulphate and potassium chloride solution within the nano-channels of porous Indium-Tin Oxide (ITO), also known as Tin doped Indium Oxide templates. The nanowires developed were fairly continuous with diameters ranging from 110-140 nm along the entire length. Single as well as poly-crystalline copper wires have been prepared by application of appropriate potential during the EMD process. Scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), small angle electron diffraction (SAED) and atomic force microscopy (AFM) were used to characterize the synthesized nano wires at room temperature. The electrochemical response of synthesized products was evaluated by cyclic voltammetry while surface energy analysis was carried out using a Goniometer.

Antifungal Activity of Silver Colloidal Nanoparticles against Phytopathogenic Fungus (Phomopsis sp.) in Soybean Seeds

Among the many promising nanomaterials with antifungal properties, metal nanoparticles (silver nanoparticles) stand out due to their high chemical activity. Therefore, the aim of this study was to evaluate the effect of silver nanoparticles (AgNPs) against Phomopsis sp. AgNPs were synthesized by silver nitrate reduction with sodium citrate and stabilized with ammonia. The synthesized AgNPs have further been characterized by UV/Visible spectroscopy, Biophysical techniques like Dynamic light scattering (DLS) and Scanning Electron Microscopy (SEM). The average diameter of the prepared silver colloidal nanoparticles was about 52 nm. Absolute inhibitions (100%) were observed on treated with a 270 and 540 µg ml-1 concentration of AgNPs. The results from the study of the AgNPs antifungal effect are significant and suggest that the synthesized silver nanoparticles may have an advantage compared with conventional fungicides.

Crystalline Graphene Nanoribbons with Atomically Smooth Edges via a Novel Physico- Chemical Route

A novel physico-chemical route to produce few layer graphene nanoribbons with atomically smooth edges is reported, via acid treatment (H2SO4:HNO3) followed by characteristic thermal shock processes involving extremely cold substances. Samples were studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman spectroscopy and X-ray photoelectron spectroscopy. This method demonstrates the importance of having the nanotubes open ended for an efficient uniform unzipping along the nanotube axis. The average dimensions of these nanoribbons are approximately ca. 210 nm wide and consist of few layers, as observed by transmission electron microscopy. The produced nanoribbons exhibit different chiralities, as observed by high resolution transmission electron microscopy. This method is able to provide graphene nanoribbons with atomically smooth edges which could be used in various applications including sensors, gas adsorption materials, composite fillers, among others.

Analysis of Polymer Surface Modifications due to Discharges Initiated by Water Droplets under High Electric Fields

This paper investigates the influence of various parameters on the behaviour of water droplets on polymeric surfaces under high electric fields. An inclined plane test was carried out to understand the droplet behaviour in strong electric field. Parameters such as water droplet conductivity, droplet volume, polymeric surface roughness and droplet positioning with respect to the electrodes were studied. The flashover voltage is affected by all aforementioned parameters. The droplet positioning is in some cases more vital than the droplet volume. Surface damages were analysed using Scanning Electron Microscopy (SEM) studies and by Energy dispersive X-ray Analysis (EDAX). It is observes that magnitude of discharge have direct influence on amount of surface da

Residual Stresses in Thermally Sprayed Gas Turbine Components

In this paper, the residual stress of thermal spray coatings in gas turbine component by curvature method has been studied. The samples and shaft were coated by hard WC-12Co cermets using high velocity oxy fuel (HVOF) after preparation in same conditions. The curvature of coated samples was measured by using of coordinate measurement machine (CMM). The metallurgical and Tribological studies has been made on the coated shaft using optical microscopy and scanning electron microscopy (SEM)

Application of Ti/RuO2-SnO2-Sb2O5 Anode for Degradation of Reactive Black-5 Dye

Electrochemical-oxidation of Reactive Black-5 (RB- 5) was conducted for degradation using DSA type Ti/RuO2-SnO2- Sb2O5 electrode. In the study, for electro-oxidation, electrode was indigenously fabricated in laboratory using titanium as substrate. This substrate was coated using different metal oxides RuO2, Sb2O5 and SnO2 by thermal decomposition method. Laboratory scale batch reactor was used for degradation and decolorization studies at pH 2, 7 and 11. Current density (50mA/cm2) and distance between electrodes (8mm) were kept constant for all experiments. Under identical conditions, removal of color, COD and TOC at initial pH 2 was 99.40%, 55% and 37% respectively for initial concentration of 100 mg/L RB-5. Surface morphology and composition of the fabricated electrode coatings were characterized using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) respectively. Coating microstructure was analyzed by X-ray diffraction (XRD). Results of this study further revealed that almost 90% of oxidation occurred within 5-10 minutes.

Effect of Spray Stand-off on Elasticity Modulus of Thermally Sprayed Coatings

The mechanical and tribological properties in WC-Co coatings are strongly affected by hardness and elasticity specifications. The results revealed the effect of spraying distance on microhardness and elasticity modulus of coatings. The metallurgical studies have been made on coated samples using optical microscopy, scanning electron microscopy (SEM).

Effect of Na2O Content on Durability of Geopolymer Mortars in Sulphuric Acid

This paper presents the findings of an experimental investigation to study the effect of alkali content in geopolymer mortar specimens exposed to sulphuric acid. Geopolymer mortar specimens were manufactured from Class F fly ash by activation with a mixture of sodium hydroxide and sodium silicate solution containing 5% to 8% Na2O. Durability of specimens were assessed by immersing them in 10% sulphuric acid solution and periodically monitoring surface deterioration and depth of dealkalization, changes in weight and residual compressive strength over a period of 24 weeks. Microstructural changes in the specimens were studied with Scanning electron microscopy (SEM) and EDAX. Alkali content in the activator solution significantly affects the durability of fly ash based geopolymer mortars in sulphuric acid. Specimens manufactured with higher alkali content performed better than those manufactured with lower alkali content. After 24 weeks in sulphuric acid, specimen with 8% alkali still recorded a residual strength as high as 55%.

The Study of the Interaction between Catanionic Surface Micelle SDS-CTAB and Insulin at Air/Water Interface

Herein, we report the different types of surface morphology due to the interaction between the pure protein Insulin (INS) and catanionic surfactant mixture of Sodium Dodecyl Sulfate (SDS) and Cetyl Trimethyl Ammonium Bromide (CTAB) at air/water interface obtained by the Langmuir-Blodgett (LB) technique. We characterized the aggregations by Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM) and Fourier transform infrared spectroscopy (FTIR) in LB films. We found that the INS adsorption increased in presence of catanionic surfactant at air/water interface. The presence of small amount of surfactant induces two-stage growth kinetics due to the pure protein absorption and protein-catanionic surface micelle interaction. The protein remains in native state in presence of small amount of surfactant mixture. Smaller amount of surfactant mixture with INS is producing surface micelle type structure. This may be considered for drug delivery system. On the other hand, INS becomes unfolded and fibrillated in presence of higher amount of surfactant mixture. In both the cases, the protein was successfully immobilized on a glass substrate by the LB technique. These results may find applications in the fundamental science of the physical chemistry of surfactant systems, as well as in the preparation of drug-delivery system.

pH-Responsiveness Properties of a Biodigradable Hydrogels Based on Carrageenan-g-poly(NaAA-co-NIPAM)

A novel thermo-sensitive superabsorbent hydrogel with salt- and pH-responsiveness properties was obtained by grafting of mixtures of acrylic acid (AA) and N-isopropylacrylamide (NIPAM) monomers onto kappa-carrageenan, kC, using ammonium persulfate (APS) as a free radical initiator in the presence of methylene bisacrylamide (MBA) as a crosslinker. Infrared spectroscopy was carried out to confirm the chemical structure of the hydrogel. Moreover, morphology of the samples was examined by scanning electron microscopy (SEM). The effect of MBA concentration and AA/NIPAM weight ratio on the water absorbency capacity has been investigated. The swelling variations of hydrogels were explained according to swelling theory based on the hydrogel chemical structure. The hydrogels exhibited salt-sensitivity and cation exchange properties. The temperature- and pH-reversibility properties of the hydrogels make the intelligent polymers as good candidates for considering as potential carriers for bioactive agents, e.g. drugs.

Physicochemical Characterization of MFI–Ceramic Hollow Fibres Membranes for CO2 Separation with Alkali Metal Cation

This paper present some preliminary work on the preparation and physicochemical caracterization of nanocomposite MFI-alumina structures based on alumina hollow fibres. The fibers are manufactured by a wet spinning process. α-alumina particles were dispersed in a solution of polysulfone in NMP. The resulting slurry is pressed through the annular gap of a spinneret into a precipitation bath. The resulting green fibres are sintered. The mechanical strength of the alumina hollow fibres is determined by a three-point-bending test while the pore size is characterized by bubble-point testing. The bending strength is in the range of 110 MPa while the average pore size is 450 nm for an internal diameter of 1 mm and external diameter of 1.7 mm. To characterize the MFI membranes various techniques were used for physicochemical characterization of MFI–ceramic hollow fibres membranes: The nitrogen adsorption, X-ray diffractometry, scanning electron microscopy combined with X emission microanalysis. Scanning Electron Microscopy (SEM) and Energy Dispersive Microanalysis by the X-ray were used to observe the morphology of the hollow fibre membranes (thickness, infiltration into the carrier, defects, homogeneity). No surface film, has been obtained, as observed by SEM and EDX analysis and confirmed by high temperature variation of N2 and CO2 gas permeances before cation exchange. Local analysis and characterise (SEM and EDX) and overall (by ICP elemental analysis) were conducted on two samples exchanged to determine the quantity and distribution of the cation of cesium on the cross section fibre of the zeolite between the cavities.

On the Oil Repellency of Nanotextured Aluminum Surface

Two different superhydrophobic surfaces were elaborated and their oil repellency behavior was evaluated using several liquid with different surface tension. A silicone rubber/SiO2 nanocomposite coated (A) on aluminum substrate by “spin-coating" and the sample B was an anodized aluminum surface covered by Teflon-like coating. A high static contact angle about ∼162° was measured for two prepared surfaces on which the water droplet rolloff. Scanning electron microscopy (SEM) showed the presence of micro/nanostructures for both sample A and B similar to that of lotus leaf. However the sample A presented significantly different behaviour of wettability against the low surface tension liquid. Sample A has been wetted totally by oil (dodecan) droplet while sample B showed oleophobic behaviour. Oleophobic property of Teflon like coating can be contributed to the presence of CF2 and CF3 functional group which was shown by XPS analysis.

Influence of Surface-Treated Coarse Recycled Concrete Aggregate on Compressive Strength of Concrete

This paper reports on the influence of surface-treated coarse recycled concrete aggregate (RCA) on developing the compressive strength of concrete. The coarse RCA was initially treated by separately impregnating it in calcium metasilicate (CM) or wollastonite and nanosilica (NS) prepared at various concentrations. The effects of both treatment materials on concrete properties (e.g., slump, density and compressive strength) were evaluated. Scanning electron microscopy (SEM) analysis was performed to examine the microstructure of the resulting concrete. Results show that the effective use of treated coarse RCA significantly enhances the compressive strength of concrete. This result is supported by the SEM analysis, which indicates the formation of a dense interface between the treated coarse RCA and the cement matrix. Coarse RCA impregnated in CM solution results in better concrete strength than NS, and the optimum concentration of CM solution recommended for treated coarse RCA is 10%.

Fracture Characterization of Plain Woven Fabric Glass-Epoxy Composites

Delamination between layers in composite materials is a major structural failure. The delamination resistance is quantified by the critical strain energy release rate (SERR). The present investigation deals with the strain energy release rate of two woven fabric composites. Materials used are made of two types of glass fiber (360 gsm and 600 gsm) of plain weave and epoxy as matrix. The fracture behavior is studied using the mode I, double cantilever beam test and the mode II, end notched flexure test, in order to determine the energy required for the initiation and growth of an artificial crack. The delamination energy of these two materials is compared in order to study the effect of weave and reinforcement on mechanical properties. The fracture mechanism is also analyzed by means of scanning electron microscopy (SEM). It is observed that the plain weave fabric composite with lesser strand width has higher inter laminar fracture properties compared to the plain weave fabric composite with more strand width.

Adsorption Kinetics of Alcohols over MCM-41 Materials

Adsorption of methanol and ethanol over mesoporous siliceous material are studied in the current paper. The pure mesoporous silica is prepared using tetraethylorthosilicate (TEOS) as silica source and dodecylamine as template at low pH. The prepared material was characterized using nitrogen adsorption,nX-ray diffraction (XRD) and scanning electron microscopy (SEM). The adsorption kinetics of methanol and ethanol from aqueous solution were studied over the prepared mesoporous silica material. The percent removal of alcohol was calculated per unit mass of adsorbent used. The 1st order model is found to be in agreement with both adsorbates while the 2nd order model fit the adsorption of methanol only.

Proton-conducting PVA/PMA Hybrid Membranes for Fuel Cell Applications

The hybrid membranes containing inorganic materials in polymer matrix are identified as a remarkable family of proton conducting hybrid electrolytes. In this work, the proton conducting inorganic/organic hybrid membranes for proton exchange membrane fuel cells (PEMFCs) were prepared using polyvinyl alcohol (PVA), tetraethoxyorthosilane (TEOS) and heteropolyacid (HPA). The synthesized hybrid membranes were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction spectroscopy (XRD), Scanning electron microscopy (SEM) and Thermogravimetry analysis (TGA). The effects of heteropolyacid incorporation on membrane properties, including morphology and thermal stability were extensively investigated.

Enhanced Quality of Zeolite LSX: Studying Effect of Crystallized Containers

Low silica type X (LSX) Zeolite is one of useful material in many manufacturing due to the advantage properties including high surface area, stability, microporous crystalline aluminosilicates and positive ion in an extra–framework. The LSX was used rice husk silica source which obtained by leaching with hydrochloric acid and calcination at 500C. To improve the synthesis method, the LSX was crystallizated in Teflon–lined autoclave will expedite deceasing of the amorphous particles. The mixed gel with composition of 5.5 Na2O : 1.65 K2O : Al2O3 : 2.2 SiO2 : 122 H2O was crystallized in different container (Polypropylene bottom and Teflon–lined autoclave). The obtained powder was characterized by X–ray diffraction (XRD), X–ray fluorescence spectrometry, N2 adsorption-desorption analysis BET surface area Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy to justify the quality of zeolite. The results showed the crystallized zeolite in Teflon lined autoclave has 102.8 nm of crystal size, 286 m2/g of surface area and fewer amounts of round amorphous particles when compared with the crystallized zeolite in Polypropylene.

Effect of Spray Stand-off on Hardness of Thermally Sprayed Coatings

The mechanical and tribological properties in WC-Co coatings are strongly affected by hardness and elasticity specifications. The results revealed the effect of spraying distance on microhardness and elasticity modulus of coatings. The metallurgical studies have been made on coated samples using optical microscopy, scanning electron microscopy (SEM).

Design an Electrical Nose with ZnO Nanowire Arrays

Vertical ZnO nanowire array films were synthesized based on aqueous method for sensing applications. ZnO nanowires were investigated structurally using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The gas-sensing properties of ZnO nanowires array films are studied. It is found that the ZnO nanowires array film sensor exhibits excellent sensing properties towards O2 and CO2 at 100 °C with the response time shorter than 5 s. High surface area / volume ratio of vertical ZnO nanowire and high mobility accounts for the fast response and recovery. The sensor response was measured in the range from 100 to 500 ppm O2 and CO2 in this study.

Structural Characteristics of Batch Processed Agro-Waste Fibres

The characterisation of agro-wastes fibres for composite applications from Nigeria using X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM) has been done. Fibres extracted from groundnut shell, coconut husk, rice husk, palm fruit bunch and palm fruit stalk are processed using two novel cellulose fibre production methods developed by the authors. Cellulose apparent crystallinity calculated using the deconvolution of the diffractometer trace shows that the amorphous portion of cellulose was permeable to hydrolysis yielding high crystallinity after treatment. All diffratograms show typical cellulose structure with well-defined 110, 200 and 040 peaks. Palm fruit fibres had the highest 200 crystalline cellulose peaks compared to others and it is an indication of rich cellulose content. Surface examination of the resulting fibres using SEM indicates the presence of regular cellulose network structure with some agglomerated laminated layer of thin leaves of cellulose microfibrils. The surfaces were relatively smooth indicating the removal of hemicellulose, lignin and pectin.