Effects of Asphalt Modification with Nanomaterials on Fresh and Stored Bitumen

Nanomaterials have many applications in the field of asphalt paving. Two locally produced nanomaterials were used in the asphalt binder modification. The nanomaterials used are Nanosilica (NS), and Nanoclay (NC). The virgin asphalt binder was characterized by the conventional tests. The bitumen was modified by 3%, 5% and 7% of NS and NC. The penetration index (PI), and the retaining penetration (RP) was calculated based on the results of the penetration and the softening point tests. The results show that the RP becomes 95.35% at 5% NS modified bitumen and reaches 97.56% when bitumen is modified with 3% NC. The results show significant improvement in the bitumen stiffness when modified by the two types of nanomaterials, either fresh or aged (stored).

Studying the Behavior of Asphalt Mix and Their Properties in the Presence of Nano Materials

Due to rapid development, increase in the traffic load, higher traffic volume and seasonal variation in temperature, asphalt pavement shows distresses like rutting, fatigue and thermal cracking etc. because of this pavement fails during service life so that bitumen needs to be modified with some additive. In this study VG30 grade bitumen modify with addition of nanosilica with 1% to 5% (increment of 1%) by weight of bitumen. Hot mix asphalt (HMA) have higher mixing, laying and rolling temperatures which leads to higher consumption of fuel. To address this issue, a nano material named ZycoTherm which is chemical warm mix asphalt (WMA) additive is added to bitumen. Nanosilica modification (NSMB) results in the increase in stability compared to unmodified bitumen (UMB). WMA modified mix shows slightly higher stability than UMB and NSMB in a lower bitumen content. The Retained stability and tensile strength ratio (TSR) is more than 75% and 80% respectively for both mixes. Nanosilica with WMA has more resistant to temperature susceptibility, moisture susceptibility and short term aging than NSMB.

Characteristics of Nanosilica-Geopolymer Nanocomposites and Mixing Effect

This paper presents the effects of mixing procedures on mechanical properties of flyash-based geopolymer matrices containing nanosilica (NS) at 0.5%, 1.0%, 2.0%, and 3.0% by weight. Comparison is made with conventional mechanical dry-mixing of NS with flyash and wet-mixing of NS in alkaline solutions. Physical and mechanical properties are investigated using X-Ray Diffraction (XRD) and Scanning Electron Microscope (SEM). Results show that generally the addition of NS particles enhanced the microstructure and improved flexural and compressive strengths of geopolymer nanocomposites. However, samples, prepared using dry-mixing approach, demonstrate better physical and mechanical properties comparing to wet-mixing samples.

Preparation and Physical Assessment of Portland Cement Base Composites Containing Nano Particles

In this research the effects of adding silica and alumina nanoparticles on flow ability and compressive strength of cementitious composites based on Portland cement were investigated. In the first stage, the rheological behavior of different samples containing nanosilica, nanoalumina and polypropylene, polyvinyl alcohol and polyethylene fibers were evaluated. With increasing of nanoparticles in fresh samples, the slump flow diameter reduced. Fibers reduced the flow ability of the samples and viscosity increased. With increasing of the micro silica particles to cement ratio from 2/1 to 2/2, the slump flow diameter increased. By adding silica and alumina nanoparticles up to 3% and 2% respectively, the compressive strength increased and after decreased. Samples containing silica nanoparticles and fibers had the highest compressive strength.

Influence of Surface-Treated Coarse Recycled Concrete Aggregate on Compressive Strength of Concrete

This paper reports on the influence of surface-treated coarse recycled concrete aggregate (RCA) on developing the compressive strength of concrete. The coarse RCA was initially treated by separately impregnating it in calcium metasilicate (CM) or wollastonite and nanosilica (NS) prepared at various concentrations. The effects of both treatment materials on concrete properties (e.g., slump, density and compressive strength) were evaluated. Scanning electron microscopy (SEM) analysis was performed to examine the microstructure of the resulting concrete. Results show that the effective use of treated coarse RCA significantly enhances the compressive strength of concrete. This result is supported by the SEM analysis, which indicates the formation of a dense interface between the treated coarse RCA and the cement matrix. Coarse RCA impregnated in CM solution results in better concrete strength than NS, and the optimum concentration of CM solution recommended for treated coarse RCA is 10%.